BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37019715)

  • 21. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling.
    Pignocchi C; Foyer CH
    Curr Opin Plant Biol; 2003 Aug; 6(4):379-89. PubMed ID: 12873534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa.
    Wang L; Ying Y; Narsai R; Ye L; Zheng L; Tian J; Whelan J; Shou H
    Plant Cell Environ; 2013 Jan; 36(1):224-36. PubMed ID: 22755510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants.
    Vigani G
    J Plant Physiol; 2012 Jan; 169(1):1-11. PubMed ID: 22050893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses?
    Kanwar P; Baby D; Bauer P
    Plant Biol (Stuttg); 2021 May; 23 Suppl 1():31-38. PubMed ID: 33772999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MxRop1-MxrbohD1 interaction mediates ROS signaling in response to iron deficiency in the woody plant Malus xiaojinensis.
    Zhai L; Sun C; Li K; Sun Q; Gao M; Wu T; Zhang X; Xu X; Wang Y; Han Z
    Plant Sci; 2021 Dec; 313():111071. PubMed ID: 34763862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All together now: regulation of the iron deficiency response.
    Riaz N; Guerinot ML
    J Exp Bot; 2021 Mar; 72(6):2045-2055. PubMed ID: 33449088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level.
    Aksoy E; Jeong IS; Koiwa H
    Plant Physiol; 2013 Jan; 161(1):330-45. PubMed ID: 23144187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato.
    Jin CW; Du ST; Chen WW; Li GX; Zhang YS; Zheng SJ
    Plant Physiol; 2009 May; 150(1):272-80. PubMed ID: 19329565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.
    Hsieh EJ; Waters BM
    J Exp Bot; 2016 Oct; 67(19):5671-5685. PubMed ID: 27605716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicon reduces the iron uptake in rice and induces iron homeostasis related genes.
    Becker M; Ngo NS; Schenk MKA
    Sci Rep; 2020 Mar; 10(1):5079. PubMed ID: 32193423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide.
    Meiser J; Lingam S; Bauer P
    Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency.
    Chen C; Cao Q; Jiang Q; Li J; Yu R; Shi G
    BMC Plant Biol; 2019 Jan; 19(1):35. PubMed ID: 30665365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties.
    Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize.
    Shi R; Melzer M; Zheng S; Benke A; Stich B; von Wirén N
    Front Plant Sci; 2018; 9():557. PubMed ID: 29755495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency.
    Fourcroy P; Sisó-Terraza P; Sudre D; Savirón M; Reyt G; Gaymard F; Abadía A; Abadia J; Álvarez-Fernández A; Briat JF
    New Phytol; 2014 Jan; 201(1):155-167. PubMed ID: 24015802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines.
    O'Rourke JA; Charlson DV; Gonzalez DO; Vodkin LO; Graham MA; Cianzio SR; Grusak MA; Shoemaker RC
    BMC Genomics; 2007 Dec; 8():476. PubMed ID: 18154662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupply.
    Larbi A; Morales F; Abadía A; Abadía J
    J Plant Physiol; 2010 Mar; 167(4):255-60. PubMed ID: 19854536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene Expression Responses to Sequential Nutrient Deficiency Stresses in Soybean.
    O'Rourke JA; Graham MA
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One way. Or another? Iron uptake in plants.
    Tsai HH; Schmidt W
    New Phytol; 2017 Apr; 214(2):500-505. PubMed ID: 28205242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.