BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37019845)

  • 1. Controlled Continuous Evolution of Enzymatic Activity Screened at Ultrahigh Throughput Using Drop-Based Microfluidics.
    Rosenthal RG; Diana Zhang X; Đurđić KI; Collins JJ; Weitz DA
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202303112. PubMed ID: 37019845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase.
    Obexer R; Godina A; Garrabou X; Mittl PR; Baker D; Griffiths AD; Hilvert D
    Nat Chem; 2017 Jan; 9(1):50-56. PubMed ID: 27995916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution for enzyme development in biocatalysis.
    Gargiulo S; Soumillion P
    Curr Opin Chem Biol; 2021 Apr; 61():107-113. PubMed ID: 33385931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution.
    Agresti JJ; Antipov E; Abate AR; Ahn K; Rowat AC; Baret JC; Marquez M; Klibanov AM; Griffiths AD; Weitz DA
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4004-9. PubMed ID: 20142500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions.
    Ryckelynck M; Baudrey S; Rick C; Marin A; Coldren F; Westhof E; Griffiths AD
    RNA; 2015 Mar; 21(3):458-69. PubMed ID: 25605963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-throughput screening-assisted in vivo directed evolution for enzyme engineering.
    Chen S; Yang Z; Zhong Z; Yu S; Zhou J; Li J; Du G; Zhang G
    Biotechnol Biofuels Bioprod; 2024 Jan; 17(1):9. PubMed ID: 38254175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system.
    Yuan H; Tu R; Tong X; Lin Y; Zhang Y; Wang Q
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35259275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput droplet-based microfluidics for directed evolution of enzymes.
    Chiu FWY; Stavrakis S
    Electrophoresis; 2019 Nov; 40(21):2860-2872. PubMed ID: 31433062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Throughput Screening System Based on Droplet Microfluidics for Glucose Oxidase Gene Libraries.
    Prodanović R; Ung WL; Đurđić KI; Fischer R; Weitz DA; Ostafe R
    Molecules; 2020 May; 25(10):. PubMed ID: 32455903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-Throughput Screening of Metagenomic Libraries Using Droplet Microfluidics.
    Cecchini DA; Sánchez-Costa M; Orrego AH; Fernández-Lucas J; Hidalgo A
    Methods Mol Biol; 2022; 2397():19-32. PubMed ID: 34813057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS).
    Gielen F; Hours R; Emond S; Fischlechner M; Schell U; Hollfelder F
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7383-E7389. PubMed ID: 27821774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods.
    Bunzel HA; Garrabou X; Pott M; Hilvert D
    Curr Opin Struct Biol; 2018 Feb; 48():149-156. PubMed ID: 29413955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey.
    Stucki A; Vallapurackal J; Ward TR; Dittrich PS
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24368-24387. PubMed ID: 33539653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform.
    Ma F; Chung MT; Yao Y; Nidetz R; Lee LM; Liu AP; Feng Y; Kurabayashi K; Yang GY
    Nat Commun; 2018 Mar; 9(1):1030. PubMed ID: 29531246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Regulatory Part Prototyping and Analysis by Cell-Free Protein Synthesis and Droplet Microfluidics.
    Gan R; Cabezas MD; Pan M; Zhang H; Hu G; Clark LG; Jewett MC; Nicol R
    ACS Synth Biol; 2022 Jun; 11(6):2108-2120. PubMed ID: 35549070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in ultrahigh-throughput screening technologies for protein evolution.
    Liu Z; Chen S; Wu J
    Trends Biotechnol; 2023 Sep; 41(9):1168-1181. PubMed ID: 37088569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions.
    Vallapurackal J; Stucki A; Liang AD; Klehr J; Dittrich PS; Ward TR
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202207328. PubMed ID: 36130864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Titratable Cell Lysis-on-Demand System for Droplet-Compartmentalized Ultrahigh-Throughput Screening in Functional Metagenomics and Directed Evolution.
    Alex Wong CF; van Vliet L; Bhujbal SV; Guo C; Sletmoen M; Stokke BT; Hollfelder F; Lale R
    ACS Synth Biol; 2021 Aug; 10(8):1882-1894. PubMed ID: 34260196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed Evolution in Drops: Molecular Aspects and Applications.
    Manteca A; Gadea A; Van Assche D; Cossard P; Gillard-Bocquet M; Beneyton T; Innis CA; Baret JC
    ACS Synth Biol; 2021 Nov; 10(11):2772-2783. PubMed ID: 34677942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.