BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37019911)

  • 1. Targeting C/EBPα overcomes primary resistance and improves the efficacy of FLT3 inhibitors in acute myeloid leukaemia.
    Wang H; Luo G; Hu X; Xu G; Wang T; Liu M; Qiu X; Li J; Fu J; Feng B; Tu Y; Kan W; Wang C; Xu R; Zhou Y; Yang J; Li J
    Nat Commun; 2023 Apr; 14(1):1882. PubMed ID: 37019911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia.
    Koschade SE; Klann K; Shaid S; Vick B; Stratmann JA; Thölken M; Meyer LM; Nguyen TD; Campe J; Moser LM; Hock S; Baker F; Meyer CT; Wempe F; Serve H; Ullrich E; Jeremias I; Münch C; Brandts CH
    Leukemia; 2022 Oct; 36(10):2396-2407. PubMed ID: 35999260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual inhibition of CHK1/FLT3 enhances cytotoxicity and overcomes adaptive and acquired resistance in FLT3-ITD acute myeloid leukemia.
    Jiang K; Li X; Wang C; Hu X; Wang P; Tong L; Tu Y; Chen B; Jin T; Wang T; Wang H; Han Y; Gui R; Yang J; Liu T; Li J; Zhou Y
    Leukemia; 2023 Mar; 37(3):539-549. PubMed ID: 36526736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salvage therapy using FLT3 inhibitors may improve long-term outcome of relapsed or refractory AML in patients with FLT3-ITD.
    Takahashi K; Kantarjian H; Pemmaraju N; Andreeff M; Borthakur G; Faderl S; Garcia-Manero G; Pierce S; Luthra R; Cardenas-Turanzas M; Estrov Z; Ravandi F; Cortes J
    Br J Haematol; 2013 Jun; 161(5):659-666. PubMed ID: 23530930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C/EBPα Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia.
    Sabatier M; Birsen R; Lauture L; Mouche S; Angelino P; Dehairs J; Goupille L; Boussaid I; Heiblig M; Boet E; Sahal A; Saland E; Santos JC; Armengol M; Fernández-Serrano M; Farge T; Cognet G; Simonetta F; Pignon C; Graffeuil A; Mazzotti C; Avet-Loiseau H; Delos O; Bertrand-Michel J; Chedru A; Dembitz V; Gallipoli P; Anstee NS; Loo S; Wei AH; Carroll M; Goubard A; Castellano R; Collette Y; Vergez F; Mansat-De Mas V; Bertoli S; Tavitian S; Picard M; Récher C; Bourges-Abella N; Granat F; Kosmider O; Sujobert P; Colsch B; Joffre C; Stuani L; Swinnen JV; Guillou H; Roué G; Hakim N; Dejean AS; Tsantoulis P; Larrue C; Bouscary D; Tamburini J; Sarry JE
    Cancer Discov; 2023 Jul; 13(7):1720-1747. PubMed ID: 37012202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Which FLT3 Inhibitor for Treatment of AML?
    Senapati J; Kadia TM
    Curr Treat Options Oncol; 2022 Mar; 23(3):359-380. PubMed ID: 35258791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classes of ITD Predict Outcomes in AML Patients Treated with FLT3 Inhibitors.
    Schwartz GW; Manning B; Zhou Y; Velu P; Bigdeli A; Astles R; Lehman AW; Morrissette JJD; Perl AE; Li M; Carroll M; Faryabi RB
    Clin Cancer Res; 2019 Jan; 25(2):573-583. PubMed ID: 30181385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine kinase inhibitor-induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors.
    Maifrede S; Nieborowska-Skorska M; Sullivan-Reed K; Dasgupta Y; Podszywalow-Bartnicka P; Le BV; Solecka M; Lian Z; Belyaeva EA; Nersesyan A; Machnicki MM; Toma M; Chatain N; Rydzanicz M; Zhao H; Jelinek J; Piwocka K; Sliwinski T; Stoklosa T; Ploski R; Fischer T; Sykes SM; Koschmieder S; Bullinger L; Valent P; Wasik MA; Huang J; Skorski T
    Blood; 2018 Jul; 132(1):67-77. PubMed ID: 29784639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression.
    Zheng R; Friedman AD; Levis M; Li L; Weir EG; Small D
    Blood; 2004 Mar; 103(5):1883-90. PubMed ID: 14592841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors.
    Alotaibi AS; Yilmaz M; Kanagal-Shamanna R; Loghavi S; Kadia TM; DiNardo CD; Borthakur G; Konopleva M; Pierce SA; Wang SA; Tang G; Guerra V; Samra B; Pemmaraju N; Jabbour E; Short NJ; Issa GC; Ohanian M; Garcia-Manero G; Bhalla KN; Patel KP; Takahashi K; Andreeff M; Cortes JE; Kantarjian HM; Ravandi F; Daver N
    Blood Cancer Discov; 2021 Mar; 2(2):125-134. PubMed ID: 33681815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards better combination regimens of cytarabine and FLT3 inhibitors in acute myeloid leukemia.
    Elmeliegy M; Den Haese J; Talati C; Wetzler M; Jusko WJ
    Cancer Chemother Pharmacol; 2020 Sep; 86(3):325-337. PubMed ID: 32748108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a highly efficient dual type I/II FMS-like tyrosine kinase inhibitor that disrupts the growth of leukemic cells.
    Beyer M; Henninger SJ; Haehnel PS; Mustafa AM; Gurdal E; Schubert B; Christmann M; Sellmer A; Mahboobi S; Drube S; Sippl W; Kindler T; Krämer OH
    Cell Chem Biol; 2022 Mar; 29(3):398-411.e4. PubMed ID: 34762849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches.
    Tecik M; Adan A
    Onco Targets Ther; 2022; 15():1449-1478. PubMed ID: 36474506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML.
    Sexauer A; Perl A; Yang X; Borowitz M; Gocke C; Rajkhowa T; Thiede C; Frattini M; Nybakken GE; Pratz K; Karp J; Smith BD; Levis M
    Blood; 2012 Nov; 120(20):4205-14. PubMed ID: 23012328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual inhibitor overcomes drug-resistant FLT3-ITD acute myeloid leukemia.
    Wang P; Xiao X; Zhang Y; Zhang B; Li D; Liu M; Xie X; Liu C; Liu P; Ren R
    J Hematol Oncol; 2021 Jul; 14(1):105. PubMed ID: 34217323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPα.
    Radomska HS; Alberich-Jordà M; Will B; Gonzalez D; Delwel R; Tenen DG
    J Clin Invest; 2012 Aug; 122(8):2955-66. PubMed ID: 22797303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3-ITD and IDH mutations.
    Shoukier M; Kadia T; Konopleva M; Alotaibi AS; Alfayez M; Loghavi S; Patel KP; Kanagal-Shamanna R; Cortes J; Samra B; Jabbour E; Garcia-Manero G; Takahashi K; Pierce S; Short NJ; Yilmaz M; Sasaki K; Masarova L; Pemmaraju N; Borthakur G; Kantarjian HM; Ravandi F; DiNardo CD; Daver N
    Cancer; 2021 Feb; 127(3):381-390. PubMed ID: 33119202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3.
    Wachholz V; Mustafa AM; Zeyn Y; Henninger SJ; Beyer M; Dzulko M; Piée-Staffa A; Brachetti C; Haehnel PS; Sellmer A; Mahboobi S; Kindler T; Brenner W; Nikolova T; Krämer OH
    Arch Toxicol; 2022 Jan; 96(1):177-193. PubMed ID: 34665271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LT-171-861, a novel FLT3 inhibitor, shows excellent preclinical efficacy for the treatment of FLT3 mutant acute myeloid leukemia.
    Yu Z; Du J; Hui H; Kan S; Huo T; Zhao K; Wu T; Guo Q; Lu N
    Theranostics; 2021; 11(1):93-106. PubMed ID: 33391463
    [No Abstract]   [Full Text] [Related]  

  • 20. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns.
    Moore AS; Faisal A; Gonzalez de Castro D; Bavetsias V; Sun C; Atrash B; Valenti M; de Haven Brandon A; Avery S; Mair D; Mirabella F; Swansbury J; Pearson AD; Workman P; Blagg J; Raynaud FI; Eccles SA; Linardopoulos S
    Leukemia; 2012 Jul; 26(7):1462-70. PubMed ID: 22354205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.