These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37020025)

  • 1. Plastic and stimulus-specific coding of salient events in the central amygdala.
    Yang T; Yu K; Zhang X; Xiao X; Chen X; Fu Y; Li B
    Nature; 2023 Apr; 616(7957):510-519. PubMed ID: 37020025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning.
    Steinberg EE; Gore F; Heifets BD; Taylor MD; Norville ZC; Beier KT; Földy C; Lerner TN; Luo L; Deisseroth K; Malenka RC
    Neuron; 2020 Jun; 106(6):1026-1043.e9. PubMed ID: 32294466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding of Environmental Cues in Central Amygdala Neurons during Foraging.
    Ponserre M; Fermani F; Gaitanos L; Klein R
    J Neurosci; 2022 May; 42(18):3783-3796. PubMed ID: 35332079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Genetically Distinct Central Amygdala Neurons in Appetitive and Aversive Responding Assayed with a Novel Dual Valence Operant Conditioning Paradigm.
    Dorofeikova M; Stelly CE; Duong A; Basavanhalli S; Bean E; Weissmuller K; Sifnugel N; Resendez A; Corey DM; Tasker JG; Fadok JP
    eNeuro; 2023 Sep; 10(9):. PubMed ID: 37640541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of genetically distinct central amygdala neurons in appetitive and aversive responding assayed with a novel dual valence operant conditioning paradigm.
    Dorofeikova M; Stelly CE; Duong A; Basavanhalli S; Bean E; Weissmuller K; Sifnugel N; Resendez A; Corey DM; Tasker JG; Fadok JP
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A VTA to Basal Amygdala Dopamine Projection Contributes to Signal Salient Somatosensory Events during Fear Learning.
    Tang W; Kochubey O; Kintscher M; Schneggenburger R
    J Neurosci; 2020 May; 40(20):3969-3980. PubMed ID: 32277045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central amygdala circuits in valence and salience processing.
    Kong MS; Zweifel LS
    Behav Brain Res; 2021 Jul; 410():113355. PubMed ID: 33989728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Central Amygdala-Globus Pallidus Circuit Conveys Unconditioned Stimulus-Related Information and Controls Fear Learning.
    Giovanniello J; Yu K; Furlan A; Nachtrab GT; Sharma R; Chen X; Li B
    J Neurosci; 2020 Nov; 40(47):9043-9054. PubMed ID: 33067362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitatory SST neurons in the medial paralemniscal nucleus control repetitive self-grooming and encode reward.
    Sun J; Yuan Y; Wu X; Liu A; Wang J; Yang S; Liu B; Kong Y; Wang L; Zhang K; Li Q; Zhang S; Yuan T; Xu TL; Huang J
    Neuron; 2022 Oct; 110(20):3356-3373.e8. PubMed ID: 36070748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of dopamine neurons in mediating the prediction error in aversive learning in insects.
    Terao K; Mizunami M
    Sci Rep; 2017 Oct; 7(1):14694. PubMed ID: 29089641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putative γ-aminobutyric acid neurons in the ventral tegmental area have a similar pattern of plasticity as dopamine neurons during appetitive and aversive learning.
    Kim YB; Matthews M; Moghaddam B
    Eur J Neurosci; 2010 Nov; 32(9):1564-72. PubMed ID: 21040517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive reward signal of dopamine neurons.
    Schultz W
    J Neurophysiol; 1998 Jul; 80(1):1-27. PubMed ID: 9658025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central amygdala controls learning in the lateral amygdala.
    Yu K; Ahrens S; Zhang X; Schiff H; Ramakrishnan C; Fenno L; Deisseroth K; Zhao F; Luo MH; Gong L; He M; Zhou P; Paninski L; Li B
    Nat Neurosci; 2017 Dec; 20(12):1680-1685. PubMed ID: 29184202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in understanding the role of phasic dopamine activity.
    Schultz W
    F1000Res; 2019; 8():. PubMed ID: 31588354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-specific projections of amygdala somatostatin-expressing neurons to the hypothalamus and brainstem.
    Bartonjo JJ; Lundy RF
    Chem Senses; 2022 Jan; 47():. PubMed ID: 35522083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli.
    Fiorillo CD; Song MR; Yun SR
    J Neurosci; 2013 Mar; 33(11):4710-25. PubMed ID: 23486944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue escape actions.
    Wu M; Minkowicz S; Dumrongprechachan V; Hamilton P; Xiao L; Kozorovitskiy Y
    Elife; 2021 Apr; 10():. PubMed ID: 33904412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential changes in GAP-43 or synaptophysin during appetitive and aversive taste memory formation.
    Grijalva LE; Miranda MI; Paredes RG
    Behav Brain Res; 2021 Jan; 397():112937. PubMed ID: 32991926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability.
    Gentry RN; Schuweiler DR; Roesch MR
    Brain Res; 2019 Jun; 1713():80-90. PubMed ID: 30300635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventral pallidal modulation of aversion processing.
    Wulff AB; Tooley J; Marconi LJ; Creed MC
    Brain Res; 2019 Jun; 1713():62-69. PubMed ID: 30300634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.