BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37020146)

  • 1. Z-REX: shepherding reactive electrophiles to specific proteins expressed tissue specifically or ubiquitously, and recording the resultant functional electrophile-induced redox responses in larval fish.
    Huang KT; Poganik JR; Parvez S; Raja S; Miller B; Long MJC; Fetcho JR; Aye Y
    Nat Protoc; 2023 May; 18(5):1379-1415. PubMed ID: 37020146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring On-Target Signaling Responses in Larval Zebrafish - Z-REX Unmasks Precise Mechanisms of Electrophilic Drugs and Metabolites.
    Huang KT; Ly P; Poganik JR; Parvez S; Long MJC; Aye Y
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37335096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Protein-Specific Redox Targeting in Live Mammalian Cells and C. elegans.
    Van Hall-Beauvais A; Zhao Y; Urul DA; Long MJC; Aye Y
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e43. PubMed ID: 30085412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-REX on-demand redox targeting in live cells.
    Parvez S; Long MJ; Lin HY; Zhao Y; Haegele JA; Pham VN; Lee DK; Aye Y
    Nat Protoc; 2016 Dec; 11(12):2328-2356. PubMed ID: 27809314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Author Correction: Z-REX: shepherding reactive electrophiles to specific proteins expressed tissue specifically or ubiquitously, and recording the resultant functional electrophile-induced redox responses in larval fish.
    Huang KT; Poganik JR; Parvez S; Raja S; Miller B; Long MJC; Fetcho JR; Aye Y
    Nat Protoc; 2023 Oct; 18(10):3155. PubMed ID: 37340167
    [No Abstract]   [Full Text] [Related]  

  • 6. Interrogating Precision Electrophile Signaling.
    Poganik JR; Long MJC; Aye Y
    Trends Biochem Sci; 2019 Apr; 44(4):380-381. PubMed ID: 30765181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX.
    Long MJC; Rogg C; Aye Y
    Acc Chem Res; 2021 Feb; 54(3):618-631. PubMed ID: 33228351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.
    Lin HY; Haegele JA; Disare MT; Lin Q; Aye Y
    J Am Chem Soc; 2015 May; 137(19):6232-44. PubMed ID: 25909755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins.
    Long MJC; Urul DA; Aye Y
    Methods Enzymol; 2020; 633():203-230. PubMed ID: 32046846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Z-REX uncovers a bifurcation in function of Keap1 paralogs.
    Van Hall-Beauvais A; Poganik JR; Huang KT; Parvez S; Zhao Y; Lin HY; Liu X; Long MJC; Aye Y
    Elife; 2022 Oct; 11():. PubMed ID: 36300632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systems analysis of protein modification and cellular responses induced by electrophile stress.
    Jacobs AT; Marnett LJ
    Acc Chem Res; 2010 May; 43(5):673-83. PubMed ID: 20218676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of electrophile-sensitive proteins.
    Wall SB; Smith MR; Ricart K; Zhou F; Vayalil PK; Oh JY; Landar A
    Biochim Biophys Acta; 2014 Feb; 1840(2):913-22. PubMed ID: 24021887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles.
    González-Jiménez P; Duarte S; Martínez AE; Navarro-Carrasco E; Lalioti V; Pajares MA; Pérez-Sala D
    Redox Biol; 2023 Aug; 64():102756. PubMed ID: 37285743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Electrophile Tagging in Caenorhabditis elegans.
    Long MJC; Urul DA; Chawla S; Lin HY; Zhao Y; Haegele JA; Wang Y; Aye Y
    Biochemistry; 2018 Jan; 57(2):216-220. PubMed ID: 28857552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development.
    Williams LM; Lago BA; McArthur AG; Raphenya AR; Pray N; Saleem N; Salas S; Paulson K; Mangar RS; Liu Y; Vo AH; Shavit JA
    Aquat Toxicol; 2016 Nov; 180():141-154. PubMed ID: 27716579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Redox Signaling and Reactive Sulfur Species to Regulate Electrophilic Stress].
    Kanda H; Kumagai Y
    Yakugaku Zasshi; 2020; 140(9):1119-1128. PubMed ID: 32879244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
    Fu L; Li Z; Liu K; Tian C; He J; He J; He F; Xu P; Yang J
    Nat Protoc; 2020 Sep; 15(9):2891-2919. PubMed ID: 32690958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity Dependent Biotin Labelling in Zebrafish for Proteome and Interactome Profiling.
    Xiong Z; Lo HP; McMahon KA; Parton RG; Hall TE
    Bio Protoc; 2021 Oct; 11(19):e4178. PubMed ID: 34722825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of combined exposure to environmental aliphatic electrophiles from plants on Keap1/Nrf2 activation and cytotoxicity in HepG2 cells: A model of an electrophile exposome.
    Abiko Y; Aoki H; Kumagai Y
    Toxicol Appl Pharmacol; 2021 Feb; 413():115392. PubMed ID: 33428920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.