These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37020333)

  • 1. ClusterX: a novel representation learning-based deep clustering framework for accurate visual inspection in virtual screening.
    Chen S; Gao J; Chen J; Xie Y; Shen Z; Xu L; Che J; Wu J; Dong X
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions.
    Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T
    J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational representations of protein-ligand interfaces for structure-based virtual screening.
    Qin T; Zhu Z; Wang XS; Xia J; Wu S
    Expert Opin Drug Discov; 2021 Oct; 16(10):1175-1192. PubMed ID: 34011222
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular graph convolutions: moving beyond fingerprints.
    Kearnes S; McCloskey K; Berndl M; Pande V; Riley P
    J Comput Aided Mol Des; 2016 Aug; 30(8):595-608. PubMed ID: 27558503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints.
    Fassio AV; Shub L; Ponzoni L; McKinley J; O'Meara MJ; Ferreira RS; Keiser MJ; de Melo Minardi RC
    J Chem Inf Model; 2022 Sep; 62(18):4300-4318. PubMed ID: 36102784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.
    Shin WH; Kihara D
    Methods Mol Biol; 2018; 1762():105-121. PubMed ID: 29594770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2004 Jan; 47(2):337-44. PubMed ID: 14711306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure enhanced deep clustering network via a weighted neighbourhood auto-encoder.
    Bai R; Huang R; Zheng L; Chen Y; Qin Y
    Neural Netw; 2022 Nov; 155():144-154. PubMed ID: 36057181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design.
    Lee HS; Im W
    J Comput Chem; 2019 Jun; 40(17):1622-1632. PubMed ID: 30829435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials.
    Keshavarzi Arshadi A; Salem M; Collins J; Yuan JS; Chakrabarti D
    Front Pharmacol; 2019; 10():1526. PubMed ID: 32009951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TSCC: Two-Stage Combinatorial Clustering for virtual screening using protein-ligand interactions and physicochemical features.
    Clinciu DL; Chen YF; Ko CN; Lo CC; Yang JM
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S26. PubMed ID: 21143810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive graph convolutional clustering network with optimal probabilistic graph.
    Zhao J; Guo J; Sun Y; Gao J; Wang S; Yin B
    Neural Netw; 2022 Dec; 156():271-284. PubMed ID: 36306688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AI-based prediction of new binding site and virtual screening for the discovery of novel P2X3 receptor antagonists.
    Kang KM; Lee I; Nam H; Kim YC
    Eur J Med Chem; 2022 Oct; 240():114556. PubMed ID: 35849939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.
    Daga PR; Polgar WE; Zaveri NT
    J Chem Inf Model; 2014 Oct; 54(10):2732-43. PubMed ID: 25148595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fingeRNAt-A novel tool for high-throughput analysis of nucleic acid-ligand interactions.
    Szulc NA; Mackiewicz Z; Bujnicki JM; Stefaniak F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009783. PubMed ID: 35653385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.