These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37020333)

  • 21. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EMBER-Embedding Multiple Molecular Fingerprints for Virtual Screening.
    Mendolia I; Contino S; De Simone G; Perricone U; Pirrone R
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reduced graph descriptor in virtual screening and data-driven clustering of high-throughput screening data.
    Harper G; Bravi GS; Pickett SD; Hussain J; Green DV
    J Chem Inf Comput Sci; 2004; 44(6):2145-56. PubMed ID: 15554685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution.
    Xu H; Xia W; Gao Q; Han J; Gao X
    Neural Netw; 2021 Oct; 142():221-230. PubMed ID: 34029998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.
    Daga PR; Polgar WE; Zaveri NT
    J Chem Inf Model; 2014 Oct; 54(10):2732-43. PubMed ID: 25148595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening.
    Amari S; Aizawa M; Zhang J; Fukuzawa K; Mochizuki Y; Iwasawa Y; Nakata K; Chuman H; Nakano T
    J Chem Inf Model; 2006; 46(1):221-30. PubMed ID: 16426058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual-Tactile Fused Graph Learning for Object Clustering.
    Zhang T; Cong Y; Sun G; Dong J
    IEEE Trans Cybern; 2022 Nov; 52(11):12275-12289. PubMed ID: 34133303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience.
    Bragina ME; Daina A; Perez MAS; Michielin O; Zoete V
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions.
    Zhan H; Zhu X; Qiao Z; Hu J
    Anal Chim Acta; 2023 Mar; 1244():340558. PubMed ID: 36737143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitatively integrating molecular structure and bioactivity profile evidence into drug-target relationship analysis.
    Xu T; Zhu R; Liu Q; Cao Z
    BMC Bioinformatics; 2012 May; 13():75. PubMed ID: 22559876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Achieving deep clustering through the use of variational autoencoders and similarity-based loss.
    Ma H
    Math Biosci Eng; 2022 Jul; 19(10):10344-10360. PubMed ID: 36031997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning model for virtual screening of novel 3C-like protease enzyme inhibitors against SARS coronavirus diseases.
    Kumari M; Subbarao N
    Comput Biol Med; 2021 May; 132():104317. PubMed ID: 33721736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer.
    Aziz M; Ejaz SA; Zargar S; Akhtar N; Aborode AT; A Wani T; Batiha GE; Siddique F; Alqarni M; Akintola AA
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pseudo-Label Guided Collective Matrix Factorization for Multiview Clustering.
    Wang D; Han S; Wang Q; He L; Tian Y; Gao X
    IEEE Trans Cybern; 2022 Sep; 52(9):8681-8691. PubMed ID: 33606648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery.
    Pozzan A
    Curr Pharm Des; 2006; 12(17):2099-110. PubMed ID: 16796558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Hybrid Docking and Machine Learning Approach to Enhance the Performance of Virtual Screening Carried out on Protein-Protein Interfaces.
    Singh N; Villoutreix BO
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means.
    Hadipour H; Liu C; Davis R; Cardona ST; Hu P
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):132. PubMed ID: 35428173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening.
    Zhang H; Zhang T; Saravanan KM; Liao L; Wu H; Zhang H; Zhang H; Pan Y; Wu X; Wei Y
    Methods; 2022 Sep; 205():247-262. PubMed ID: 35878751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimodal data fusion for supervised learning-based identification of USP7 inhibitors: a systematic comparison.
    Shen WF; Tang HW; Li JB; Li X; Chen S
    J Cheminform; 2023 Jan; 15(1):5. PubMed ID: 36631899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ensembling of Gene Clusters Utilizing Deep Learning and Protein-Protein Interaction Information.
    Dutta P; Saha S; Chopra S; Miglani V
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2005-2016. PubMed ID: 31135367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.