These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37020618)
1. Modeling and Thermodynamic Studies of γ-Valerolactone Production from Bio-derived Methyl Levulinate. Montejano-Nares E; Ivars-Barceló F; Osman SM; Luque R Glob Chall; 2023 Apr; 7(4):2200208. PubMed ID: 37020618 [TBL] [Abstract][Full Text] [Related]
2. Continuous flow hydrogenation of methyl and ethyl levulinate: an alternative route to Tukacs JM; Sylvester Á; Kmecz I; Jones RV; Óvári M; Mika LT R Soc Open Sci; 2019 May; 6(5):182233. PubMed ID: 31218045 [TBL] [Abstract][Full Text] [Related]
3. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol. Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556 [TBL] [Abstract][Full Text] [Related]
4. Probing the mechanism of the conversion of methyl levulinate into γ-valerolactone catalyzed by Al(OiPr) Ju Z; Feng S; Ren L; Lei T; Cheng H; Yu M; Ge C RSC Adv; 2022 Jan; 12(5):2788-2797. PubMed ID: 35425337 [TBL] [Abstract][Full Text] [Related]
5. RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Yang Z; Huang YB; Guo QX; Fu Y Chem Commun (Camb); 2013 Jun; 49(46):5328-30. PubMed ID: 23648801 [TBL] [Abstract][Full Text] [Related]
6. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization. Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401 [TBL] [Abstract][Full Text] [Related]
7. A Novel Tannic Acid-Based Carbon-Supported Cobalt Catalyst for Transfer Hydrogenation of Biomass Derived Ethyl Levulinate. Wang M; Yao X; Chen Y; Lin B; Li N; Zhi K; Liu Q; Zhou H Front Chem; 2022; 10():964128. PubMed ID: 35898969 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex. Yi Y; Liu H; Xiao LP; Wang B; Song G ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709 [TBL] [Abstract][Full Text] [Related]
9. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts. Du XL; Bi QY; Liu YM; Cao Y; Fan KN ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964 [TBL] [Abstract][Full Text] [Related]
10. Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals. Cen Y; Zhu S; Guo J; Chai J; Jiao W; Wang J; Fan W RSC Adv; 2018 Feb; 8(17):9152-9160. PubMed ID: 35541863 [TBL] [Abstract][Full Text] [Related]
11. Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO-66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone. Cai X; Xu Q; Tu G; Fu Y; Zhang F; Zhu W Front Chem; 2019; 7():42. PubMed ID: 30775365 [TBL] [Abstract][Full Text] [Related]
12. Highly Active Catalytic Ruthenium/TiO Xu C; Ouyang W; Muñoz-Batista MJ; Fernández-García M; Luque R ChemSusChem; 2018 Aug; 11(15):2604-2611. PubMed ID: 29808554 [TBL] [Abstract][Full Text] [Related]
13. Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to γ-Valerolactone. Yang T; Li H; He J; Liu Y; Zhao W; Wang Z; Ji X; Yang S ACS Omega; 2017 Mar; 2(3):1047-1054. PubMed ID: 31457487 [TBL] [Abstract][Full Text] [Related]
14. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts. Liu Y; Gao L; Chang G; Zhou W Bioresour Technol; 2024 Aug; 406():131001. PubMed ID: 38897549 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the conversion of ethyl levulinate to γ-valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework. Yang J; Huang W; Liu Y; Zhou T RSC Adv; 2018 May; 8(30):16611-16618. PubMed ID: 35540507 [TBL] [Abstract][Full Text] [Related]
16. Atom-economical synthesis of γ-valerolactone with self-supplied hydrogen from methanol. Li Z; Tang X; Jiang Y; Wang Y; Zuo M; Chen W; Zeng X; Sun Y; Lin L Chem Commun (Camb); 2015 Nov; 51(91):16320-3. PubMed ID: 26403664 [TBL] [Abstract][Full Text] [Related]
17. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO Kurisingal JF; Rachuri Y; Palakkal AS; Pillai RS; Gu Y; Choe Y; Park DW ACS Appl Mater Interfaces; 2019 Nov; 11(44):41458-41471. PubMed ID: 31613085 [TBL] [Abstract][Full Text] [Related]
18. Computational Mechanism of Methyl Levulinate Conversion to γ-Valerolactone on UiO-66 Metal Organic Frameworks. Ortuño MA; Rellán-Piñeiro M; Luque R ACS Sustain Chem Eng; 2022 Mar; 10(11):3567-3573. PubMed ID: 35360051 [TBL] [Abstract][Full Text] [Related]
20. Alloying nickel and cobalt with iron on ZSM-5 for tuning competitive hydrogenation reactions for selective one-pot conversion of furfural to gamma-valerolactone. Shao Y; Guo M; Fan M; Sun K; Gao G; Li C; Bkangmo Kontchouo FM; Zhang L; Zhang S; Hu X Dalton Trans; 2022 Nov; 51(45):17441-17453. PubMed ID: 36326162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]