These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37020619)

  • 1. Enhancing the Performance of Piezoelectric Wind Energy Harvester Using Curve-Shaped Attachments on the Bluff Body.
    Poudel P; Sharma S; Ansari MNM; Vaish R; Kumar R; Ibrahim SM; Thomas P; Bowen C
    Glob Chall; 2023 Apr; 7(4):2100140. PubMed ID: 37020619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Design and Experiment of a Spring-Coupling Electromagnetic Galloping Energy Harvester.
    Xiong L; Gao S; Jin L; Guo S; Sun Y; Liu F
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation.
    Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer.
    Salem S; Fraňa K
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever.
    Xin M; Jiang X; Xu C; Yang J; Lu C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Potential of Flow-Induced Vibration Energy Harvesting Using a Corrugated Hyperstructure Bluff Body.
    Yuan Y; Wang H; Yang C; Sun H; Tang Y; Zhang Z
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration.
    Shan X; Tian H; Cao H; Feng J; Xie T
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on nonlinear isometric L-shaped cantilever beam type piezoelectric wind energy harvester based on magnetic coupling.
    He L; Yu G; Han Y; Liu L; Hu D; Cheng G
    Rev Sci Instrum; 2022 Nov; 93(11):115004. PubMed ID: 36461430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions.
    Wang L; Zhu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure.
    Li X; Li Z; Liu Q; Shan X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric Energy Harvester Response Statistics.
    Gaidai O; Cao Y; Xing Y; Wang J
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Influence of Coil Arrangement on the Output Characteristics of Electromagnetic Galloping Energy Harvester.
    Xiong L; Gao S; Jin L; Sun Y; Du X; Liu F
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Non-Uniform Deformation on Piezoelectric Circular Diaphragm Energy Harvester with a Ring-Shaped Ceramic Disk.
    Xu C; Li Y; Yang T
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33126540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.