These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37020619)
41. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H. Xu W; Ao H; Zhou N; Song Z; Jiang H Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405 [TBL] [Abstract][Full Text] [Related]
42. An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments. Zhang X; Yang W; Zuo M; Tan H; Fan H; Mao Q; Wan X Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563023 [TBL] [Abstract][Full Text] [Related]
43. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations. Kumari N; Rakotondrabe M Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386 [TBL] [Abstract][Full Text] [Related]
44. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester. Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971 [TBL] [Abstract][Full Text] [Related]
45. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter. Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434 [TBL] [Abstract][Full Text] [Related]
46. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center. Chen J; Liu X; Wang H; Wang S; Guan M Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679 [TBL] [Abstract][Full Text] [Related]
47. Research on a rotary piezoelectric wind energy harvester with bilateral excitation. He L; Zheng X; Li W; Gu X; Han Y; Cheng G Rev Sci Instrum; 2023 Feb; 94(2):025004. PubMed ID: 36859045 [TBL] [Abstract][Full Text] [Related]
49. Improved Multilayered (Bi,Sc)O Kim BS; Ji JH; Kim HT; Kim SJ; Koh JH Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244381 [TBL] [Abstract][Full Text] [Related]
50. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration. Jia J; Shan X; Upadrashta D; Xie T; Yang Y; Song R Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30562985 [TBL] [Abstract][Full Text] [Related]
51. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers. Cho H; Park J; Park JY J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909 [TBL] [Abstract][Full Text] [Related]
52. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow. Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401 [TBL] [Abstract][Full Text] [Related]
53. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes. Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623 [TBL] [Abstract][Full Text] [Related]
54. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers. Zhang R; Shao H; Lin T; Wang X J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177 [TBL] [Abstract][Full Text] [Related]
55. Karman Vortex Creation Using Cylinder for Flutter Energy Harvester Device. Atrah AB; Ab-Rahman MS; Salleh H; Nuawi MZ; Mohd Nor MJ; Jamaludin NB Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400418 [TBL] [Abstract][Full Text] [Related]
56. Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester with a Low Startup Wind Speed in Urban Self-Powered Sensing. Li G; Cui J; Liu T; Zheng Y; Hao C; Hao X; Xue C Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837998 [TBL] [Abstract][Full Text] [Related]
57. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations. Min Z; Hou C; Sui G; Shan X; Xie T Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421125 [TBL] [Abstract][Full Text] [Related]
58. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics. Jiang J; Liu S; Feng L; Zhao D Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932 [TBL] [Abstract][Full Text] [Related]
59. Overview of micro/nano-wind energy harvesters and sensors. Fu X; Bu T; Li C; Liu G; Zhang C Nanoscale; 2020 Dec; 12(47):23929-23944. PubMed ID: 33244556 [TBL] [Abstract][Full Text] [Related]
60. Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction. Su WJ; Wang ZS Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806133 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]