These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37021133)

  • 1. Explaining cocktail party effect and McGurk effect with a spiking neural network improved by Motif-topology.
    Jia S; Zhang T; Zuo R; Xu B
    Front Neurosci; 2023; 17():1132269. PubMed ID: 37021133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Convolutional Spiking Neural Network With Biologically Plausible Reward Propagation.
    Zhang T; Jia S; Cheng X; Xu B
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7621-7631. PubMed ID: 34125691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Implementation of a Spiking Neural Network with Integrate-and-Fire Neuron Model for Pattern Recognition.
    Rashvand P; Ahmadzadeh MR; Shayegh F
    Int J Neural Syst; 2021 Mar; 31(3):2050073. PubMed ID: 33353527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks.
    Wu Y; Deng L; Li G; Zhu J; Shi L
    Front Neurosci; 2018; 12():331. PubMed ID: 29875621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network.
    Dong M; Huang X; Xu B
    PLoS One; 2018; 13(11):e0204596. PubMed ID: 30496179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks.
    Jia S; Zhang T; Cheng X; Liu H; Xu B
    Front Neurosci; 2021; 15():654786. PubMed ID: 33776644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks.
    Kugele A; Pfeil T; Pfeiffer M; Chicca E
    Front Neurosci; 2020; 14():439. PubMed ID: 32431592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.
    Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2017; 11():350. PubMed ID: 28701911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms.
    Syed T; Kakani V; Cui X; Kim H
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network.
    Wu D; Yi X; Huang X
    Front Neurosci; 2022; 16():759900. PubMed ID: 35692427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantization Framework for Fast Spiking Neural Networks.
    Li C; Ma L; Furber S
    Front Neurosci; 2022; 16():918793. PubMed ID: 35928011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks.
    Yu C; Gu Z; Li D; Wang G; Wang A; Li E
    Front Neurosci; 2022; 16():1079357. PubMed ID: 36620452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
    Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.