BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37021319)

  • 1. Plant mitochondrial introns as genetic markers - conservation and variation.
    Grosser MR; Sites SK; Murata MM; Lopez Y; Chamusco KC; Love Harriage K; Grosser JW; Graham JH; Gmitter FG; Chase CD
    Front Plant Sci; 2023; 14():1116851. PubMed ID: 37021319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes.
    Ishikawa G; Yonemaru J; Saito M; Nakamura T
    BMC Genomics; 2007 May; 8():135. PubMed ID: 17535443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops.
    Feltus FA; Singh HP; Lohithaswa HC; Schulze SR; Silva TD; Paterson AH
    Plant Physiol; 2006 Apr; 140(4):1183-91. PubMed ID: 16607031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery.
    You FM; Huo N; Gu YQ; Lazo GR; Dvorak J; Anderson OD
    BMC Bioinformatics; 2009 Oct; 10():331. PubMed ID: 19825183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1.
    Laroche J; Bousquet J
    Mol Biol Evol; 1999 Apr; 16(4):441-52. PubMed ID: 10331271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat.
    Holland JB; Helland SJ; Sharopova N; Rhyne DC
    Genome; 2001 Dec; 44(6):1065-76. PubMed ID: 11768210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants.
    Groth-Malonek M; Pruchner D; Grewe F; Knoop V
    Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of intron-flanking EST-specific markers in the genetic characterization of Artemisia annua genotypes from the trans-Himalayan region of Ladakh, India.
    Kumar J; Bajaj P; Singh H; Mishra GP; Srivastava RB; Naik PK
    J Environ Biol; 2012 Nov; 33(6):991-7. PubMed ID: 23741790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea.
    Jaramillo-Correa JP; Bousquet J; Beaulieu J; Isabel N; Perron M; Bouillé M
    Theor Appl Genet; 2003 May; 106(8):1353-67. PubMed ID: 12750779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.
    Löhne C; Borsch T
    Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information.
    Wang Y; Chen J; Francis DM; Shen H; Wu T; Yang W
    Theor Appl Genet; 2010 Nov; 121(7):1199-207. PubMed ID: 20552324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns.
    Kwon EC; Kim JH; Kim NS
    Genes Genomics; 2020 May; 42(5):553-570. PubMed ID: 32200544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia.
    Vaughn JC; Mason MT; Sper-Whitis GL; Kuhlman P; Palmer JD
    J Mol Evol; 1995 Nov; 41(5):563-72. PubMed ID: 7490770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel intron markers to study the phylogeny of closely related mammalian species.
    Igea J; Juste J; Castresana J
    BMC Evol Biol; 2010 Nov; 10():369. PubMed ID: 21118501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exon-primed intron-crossing (EPIC) markers for non-model teleost fishes.
    Li C; Riethoven JJ; Ma L
    BMC Evol Biol; 2010 Mar; 10():90. PubMed ID: 20353608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-specific primer sets for starch biosynthesis genes in wheat.
    Blake NK; Sherman JD; Dvorák J; Talbert LE
    Theor Appl Genet; 2004 Oct; 109(6):1295-1302. PubMed ID: 15340684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases.
    Zumkeller S; Knoop V
    BMC Ecol Evol; 2023 Mar; 23(1):5. PubMed ID: 36915058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligonucleotide primers for PCR amplification of coelomate introns.
    Jarman SN; Ward RD; Elliott NG
    Mar Biotechnol (NY); 2002 Sep; 4(4):347-55. PubMed ID: 14961246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of intron-flanking EST markers for the Lolium/Festuca complex using rice genomic information.
    Tamura K; Yonemaru J; Hisano H; Kanamori H; King J; King IP; Tase K; Sanada Y; Komatsu T; Yamada T
    Theor Appl Genet; 2009 May; 118(8):1549-60. PubMed ID: 19326093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of exon-intron architecture variation of genes in eukaryotic genomes.
    Zhu L; Zhang Y; Zhang W; Yang S; Chen JQ; Tian D
    BMC Genomics; 2009 Jan; 10():47. PubMed ID: 19166620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.