These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37021687)

  • 1. Latch-mediated spring actuation (LaMSA): the power of integrated biomechanical systems.
    Patek SN
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37021687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems.
    Longo SJ; Cox SM; Azizi E; Ilton M; Olberding JP; St Pierre R; Patek SN
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31399509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spring and latch dynamics can act as control pathways in ultrafast systems.
    Hyun NP; Olberding JP; De A; Divi S; Liang X; Thomas E; St Pierre R; Steinhardt E; Jorge J; Longo SJ; Cox S; Mendoza E; Sutton GP; Azizi E; Crosby AJ; Bergbreiter S; Wood RJ; Patek SN
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric latches enable tuning of ultrafast, spring-propelled movements.
    Longo SJ; St Pierre R; Bergbreiter S; Cox S; Schelling B; Patek SN
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36606724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuned muscle and spring properties increase elastic energy storage.
    Mendoza E; Azizi E
    J Exp Biol; 2021 Dec; 224(24):. PubMed ID: 34821932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latch-based control of energy output in spring actuated systems.
    Divi S; Ma X; Ilton M; St Pierre R; Eslami B; Patek SN; Bergbreiter S
    J R Soc Interface; 2020 Jul; 17(168):20200070. PubMed ID: 32693743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems.
    Cook A; Pandhigunta K; Acevedo MA; Walker A; Didcock RL; Castro JT; O'Neill D; Acharya R; Bhamla MS; Anderson PSL; Ilton M
    Integr Org Biol; 2022; 4(1):obac032. PubMed ID: 36060863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling and development of elastic mechanisms: the tiny strikes of larval mantis shrimp.
    Harrison JS; Porter ML; McHenry MJ; Robinson HE; Patek SN
    J Exp Biol; 2021 Apr; 224(8):. PubMed ID: 33914038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of temperature on elastic energy storage and release in a system with a dynamic mechanical advantage latch.
    Mendoza E; Martinez M; Olberding JP; Azizi E
    J Exp Biol; 2023 Oct; 226(19):. PubMed ID: 37727106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hurry Up and Get Out of the Way! Exploring the Limits of Muscle-Based Latch Systems for Power Amplification.
    Abbott EM; Nezwek T; Schmitt D; Sawicki GS
    Integr Comp Biol; 2019 Dec; 59(6):1546-1558. PubMed ID: 31418784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A power amplification dyad in seahorses.
    Avidan C; Day SW; Holzman R
    Proc Biol Sci; 2023 Apr; 290(1996):20230520. PubMed ID: 37040808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling jumps through latches in small jumping robots.
    Divi S; St Pierre R; Foong HM; Bergbreiter S
    Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37683672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual spring force couples yield multifunctionality and ultrafast, precision rotation in tiny biomechanical systems.
    Sutton GP; St Pierre R; Kuo CY; Summers AP; Bergbreiter S; Cox S; Patek SN
    J Exp Biol; 2022 Jul; 225(14):. PubMed ID: 35863219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing elastic mechanisms: ultrafast motion and cavitation emerge at the millimeter scale in juvenile snapping shrimp.
    Harrison JS; Patek SN
    J Exp Biol; 2023 Feb; 226(4):. PubMed ID: 36854255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and control of jumping microrobots with torque reversal latches.
    Skowronski N; Malek Pour M; Singh S; Longo SJ; St Pierre R
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38697139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physical model of mantis shrimp for exploring the dynamics of ultrafast systems.
    Steinhardt E; Hyun NP; Koh JS; Freeburn G; Rosen MH; Temel FZ; Patek SN; Wood RJ
    Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34389671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle fatigue in the latch-mediated spring actuated mandibles of trap-jaw ants.
    Larabee FJ; Gibson JC; Rivera MD; Anderson PSL; Suarez AV
    Integr Comp Biol; 2022 Jun; ():. PubMed ID: 35689666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement.
    Olberding JP; Deban SM; Rosario MV; Azizi E
    Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of high-speed jumps in muscle and spring actuated systems: a comparative study of take-off energetics in bush-crickets (Mecopoda elongata) and locusts (Schistocerca gregaria).
    Goode CK; Woodrow C; Harrison SL; Deeming DC; Sutton GP
    J Comp Physiol B; 2023 Dec; 193(6):597-605. PubMed ID: 37857900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embodied latch mechanism of the mandible to power at ultra-high speed in the trap-jaw ant Odontomachus kuroiwae.
    Aonuma H; Naniwa K; Sugimoto Y; Ohkawara K; Kagaya K
    J Exp Biol; 2023 May; 226(10):. PubMed ID: 37040071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.