These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37021719)
1. Editorial for "The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches". Hanrahan CJ J Magn Reson Imaging; 2023 Dec; 58(6):1836-1837. PubMed ID: 37021719 [No Abstract] [Full Text] [Related]
2. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches. Hostin MA; Ogier AC; Michel CP; Le Fur Y; Guye M; Attarian S; Fortanier E; Bellemare ME; Bendahan D J Magn Reson Imaging; 2023 Dec; 58(6):1826-1835. PubMed ID: 37025028 [TBL] [Abstract][Full Text] [Related]
3. Global versus individual muscle segmentation to assess quantitative MRI-based fat fraction changes in neuromuscular diseases. Reyngoudt H; Marty B; Boisserie JM; Le Louër J; Koumako C; Baudin PY; Wong B; Stojkovic T; Béhin A; Gidaro T; Allenbach Y; Benveniste O; Servais L; Carlier PG Eur Radiol; 2021 Jun; 31(6):4264-4276. PubMed ID: 33219846 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases. Gadermayr M; Disch C; Müller M; Merhof D; Gess B Magn Reson Imaging; 2018 May; 48():20-26. PubMed ID: 29269318 [TBL] [Abstract][Full Text] [Related]
5. Lower limb muscle magnetic resonance imaging in Chinese patients with myotonic dystrophy type 1. Song J; Fu J; Ma M; Pang M; Li G; Gao L; Zhang J Neurol Res; 2020 Feb; 42(2):170-177. PubMed ID: 31951783 [No Abstract] [Full Text] [Related]
6. Deep learning for automatic segmentation of thigh and leg muscles. Agosti A; Shaqiri E; Paoletti M; Solazzo F; Bergsland N; Colelli G; Savini G; Muzic SI; Santini F; Deligianni X; Diamanti L; Monforte M; Tasca G; Ricci E; Bastianello S; Pichiecchio A MAGMA; 2022 Jun; 35(3):467-483. PubMed ID: 34665370 [TBL] [Abstract][Full Text] [Related]
7. Imaging of respiratory muscles in neuromuscular disease: A review. Harlaar L; Ciet P; van der Ploeg AT; Brusse E; van der Beek NAME; Wielopolski PA; de Bruijne M; Tiddens HAWM; van Doorn PA Neuromuscul Disord; 2018 Mar; 28(3):246-256. PubMed ID: 29398294 [TBL] [Abstract][Full Text] [Related]
8. Reference data on muscle volumes of healthy human pelvis and lower extremity muscles: an in vivo magnetic resonance imaging feasibility study. Lube J; Cotofana S; Bechmann I; Milani TL; Özkurtul O; Sakai T; Steinke H; Hammer N Surg Radiol Anat; 2016 Jan; 38(1):97-106. PubMed ID: 26251021 [TBL] [Abstract][Full Text] [Related]
9. Deep learning segmentation of transverse musculoskeletal ultrasound images for neuromuscular disease assessment. Marzola F; van Alfen N; Doorduin J; Meiburger KM Comput Biol Med; 2021 Aug; 135():104623. PubMed ID: 34252683 [TBL] [Abstract][Full Text] [Related]
10. Beyond mean value analysis - a voxel-based analysis of the quantitative MR biomarker water T Schlaeger S; Weidlich D; Zoffl A; Becherucci EA; Kottmaier E; Montagnese F; Deschauer M; Schoser B; Zimmer C; Baum T; Karampinos DC; Kirschke JS NMR Biomed; 2022 Dec; 35(12):e4805. PubMed ID: 35892264 [TBL] [Abstract][Full Text] [Related]
11. A computational approach to calculate personalized pennation angle based on MRI: effect on motion analysis. Chincisan A; Tecante K; Becker M; Magnenat-Thalmann N; Hurschler C; Choi HF Int J Comput Assist Radiol Surg; 2016 May; 11(5):683-93. PubMed ID: 26137896 [TBL] [Abstract][Full Text] [Related]