BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37021738)

  • 21. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward larger DNA origami.
    Marchi AN; Saaem I; Vogen BN; Brown S; LaBean TH
    Nano Lett; 2014 Oct; 14(10):5740-7. PubMed ID: 25179827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns.
    Tikhomirov G; Petersen P; Qian L
    Nature; 2017 Dec; 552(7683):67-71. PubMed ID: 29219965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex shapes self-assembled from single-stranded DNA tiles.
    Wei B; Dai M; Yin P
    Nature; 2012 May; 485(7400):623-6. PubMed ID: 22660323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multilayer DNA Origami with Terminal Interfaces That Are Flat and Wide-Area.
    Kilwing L; Lill P; Nathwani B; Guerra R; Benson E; Liedl T; Shih WM
    ACS Nano; 2024 Jan; 18(1):885-893. PubMed ID: 38109901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel Functionalization of DNA Origami.
    Thomsen RP; Sørensen RS; Kjems J
    Methods Mol Biol; 2023; 2639():175-194. PubMed ID: 37166718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.
    Tsutsumi T; Asakawa T; Kanegami A; Okada T; Tahira T; Hayashi K
    Biotechniques; 2014; 56(4):180-5. PubMed ID: 24724843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advancing the Utility of DNA Origami Technique through Enhanced Stability of DNA-Origami-Based Assemblies.
    Manuguri S; Nguyen MK; Loo J; Natarajan AK; Kuzyk A
    Bioconjug Chem; 2023 Jan; 34(1):6-17. PubMed ID: 35984467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Placement and orientation of individual DNA shapes on lithographically patterned surfaces.
    Kershner RJ; Bozano LD; Micheel CM; Hung AM; Fornof AR; Cha JN; Rettner CT; Bersani M; Frommer J; Rothemund PW; Wallraff GM
    Nat Nanotechnol; 2009 Sep; 4(9):557-61. PubMed ID: 19734926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulations of DNA-Origami Self-Assembly Reveal Design-Dependent Nucleation Barriers.
    Cumberworth A; Frenkel D; Reinhardt A
    Nano Lett; 2022 Sep; 22(17):6916-6922. PubMed ID: 36037484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the thermal behavior of DNA origami nanostructures.
    Wei X; Nangreave J; Jiang S; Yan H; Liu Y
    J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programming 2D Supramolecular Assemblies with Wireframe DNA Origami.
    Wang X; Jun H; Bathe M
    J Am Chem Soc; 2022 Mar; 144(10):4403-4409. PubMed ID: 35230115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures.
    Rossi-Gendron C; El Fakih F; Bourdon L; Nakazawa K; Finkel J; Triomphe N; Chocron L; Endo M; Sugiyama H; Bellot G; Morel M; Rudiuk S; Baigl D
    Nat Nanotechnol; 2023 Nov; 18(11):1311-1318. PubMed ID: 37524905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA Origami: Scaffolds for Creating Higher Order Structures.
    Hong F; Zhang F; Liu Y; Yan H
    Chem Rev; 2017 Oct; 117(20):12584-12640. PubMed ID: 28605177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Full Site-Specific Addressability in DNA Origami-Templated Silica Nanostructures.
    Wassermann LM; Scheckenbach M; Baptist AV; Glembockyte V; Heuer-Jungemann A
    Adv Mater; 2023 Jun; 35(23):e2212024. PubMed ID: 36932052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA origami: the art of folding DNA.
    Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):58-66. PubMed ID: 22162047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.