These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37021871)

  • 21. Ru/TiO₂ Nanostructured Catalysts: Synthesis, Characterization and Catalytic Activity Towards Hydrogenation of Ethyl Levulinate.
    Kumaravel S; Thiripuranthagan S; Erusappan E; Sivakumar A; Kumaravel S; Natesan B; Rajendran K
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6160-6167. PubMed ID: 34229817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst.
    Zhu L; Cadigan C; Duan C; Huang J; Bian L; Le L; Hernandez CH; Avance V; O'Hayre R; Sullivan NP
    Commun Chem; 2021 Aug; 4(1):121. PubMed ID: 36697696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Electrocatalytic N
    Wei X; Pu M; Jin Y; Wessling M
    ACS Appl Mater Interfaces; 2021 May; 13(18):21411-21425. PubMed ID: 33909402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-atom Ir
    Wang Y; Xu W; Chen X; Li C; Xie J; Yang Y; Zhu T; Zhang C
    J Hazard Mater; 2022 Jun; 432():128670. PubMed ID: 35290894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disordered Au Nanoclusters for Efficient Ammonia Electrosynthesis.
    Peng X; Zhang R; Mi Y; Wang HT; Huang YC; Han L; Head AR; Pao CW; Liu X; Dong CL; Liu Q; Zhang S; Pong WF; Luo J; Xin HL
    ChemSusChem; 2023 Apr; 16(7):e202201385. PubMed ID: 36683007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Operando Spectroscopic Study of the Dynamics of Ru Catalyst during Preferential Oxidation of CO and the Prevention of Ammonia Poisoning by Pt.
    Sato K; Zaitsu S; Kitayama G; Yagi S; Kayada Y; Nishida Y; Wada Y; Nagaoka K
    JACS Au; 2022 Jul; 2(7):1627-1637. PubMed ID: 35911446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Effective Ru/BaCeO
    Li W; Wang S; Li J
    Chem Asian J; 2019 Aug; 14(16):2815-2821. PubMed ID: 31187596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogenation of MTHPA to MHHPA over Ni-based catalysts: Al
    Pu J; Liu C; Shi S; Yun J
    RSC Adv; 2022 Nov; 12(53):34268-34281. PubMed ID: 36545590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Study of the Pyrolysis of NH
    Benés M; Pozo G; Abián M; Millera Á; Bilbao R; Alzueta MU
    Energy Fuels; 2021 May; 35(9):7193-7200. PubMed ID: 35673549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DFT study on chemical N2 fixation by using a cubane-type RuIr3S4 cluster: energy profile for binding and reduction of N2 to ammonia via Ru-N-NHx (x = 1-3) intermediates with unique structures.
    Tanaka H; Mori H; Seino H; Hidai M; Mizobe Y; Yoshizawa K
    J Am Chem Soc; 2008 Jul; 130(28):9037-47. PubMed ID: 18558678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-Site Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N
    Azofra LM; Morlanés N; Poater A; Samantaray MK; Vidjayacoumar B; Albahily K; Cavallo L; Basset JM
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15812-15816. PubMed ID: 30311342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilisation of solid-state cubic ammonia confined in a glass substance at ambient temperature under atmospheric pressure.
    Morishita M; Miyoshi H; Kawasaki H; Yanagita H
    RSC Adv; 2024 May; 14(23):16128-16137. PubMed ID: 38769953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A combined diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy-gas chromatography for the operando study of the heterogeneously catalyzed CO
    Zhao K; Zhang J; Luo W; Li M; Moioli E; Spodaryk M; Züttel A
    Rev Sci Instrum; 2020 Jul; 91(7):074102. PubMed ID: 32752808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the common intermediates over Fe-ZSM-5 in NH
    Shi X; Wang Y; Shan Y; Yu Y; He H
    J Environ Sci (China); 2020 Aug; 94():32-39. PubMed ID: 32563485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ta
    Geng C; Li J; Weiske T; Schwarz H
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11680-11687. PubMed ID: 30352846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism and catalytic performance for direct dimethyl ether synthesis by CO
    Sheng Q; Ye RP; Gong W; Shi X; Xu B; Argyle M; Adidharma H; Fan M
    J Environ Sci (China); 2020 Jun; 92():106-117. PubMed ID: 32430113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric Sites on the ZnZrO
    Feng Z; Tang C; Zhang P; Li K; Li G; Wang J; Feng Z; Li C
    J Am Chem Soc; 2023 Jun; 145(23):12663-12672. PubMed ID: 37261391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ pulse diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) mass spectrometry study of the water-gas shift reaction on nickel(II) oxide-zinc(II) oxide catalysts.
    Tang CW; Chuang SS
    Appl Spectrosc; 2014; 68(2):238-44. PubMed ID: 24480281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lithium-based Loop for Ambient-Pressure Ammonia Synthesis in a Liquid Alloy-Salt Catalytic System.
    Tang Z; Meng X; Shi Y; Guan X
    ChemSusChem; 2021 Nov; 14(21):4697-4707. PubMed ID: 34467662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of ammonia in the reactions of a tungsten dinitrogen with ruthenium dihydrogen complexes under mild reaction conditions.
    Nishibayashi Y; Takemoto S; Iwai S; Hidai M
    Inorg Chem; 2000 Dec; 39(26):5946-57. PubMed ID: 11151496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.