These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37021871)

  • 41. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.
    Sato K; Imamura K; Kawano Y; Miyahara SI; Yamamoto T; Matsumura S; Nagaoka K
    Chem Sci; 2017 Jan; 8(1):674-679. PubMed ID: 28451216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Promotional effect of antimony on the selective catalytic reduction NO with NH
    Kwon DW; Kim DH; Hong SC
    Environ Technol; 2019 Aug; 40(19):2577-2587. PubMed ID: 29923783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design.
    Fuller J; An Q; Fortunelli A; Goddard WA
    Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic Studies of the Pt Carbonate-Mediated, Room-Temperature Oxidation of Carbon Monoxide by Oxygen over Pt/Al
    Newton MA; Ferri D; Smolentsev G; Marchionni V; Nachtegaal M
    J Am Chem Soc; 2016 Oct; 138(42):13930-13940. PubMed ID: 27696837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unique Catalytic Mechanism for Ru-Loaded Ternary Intermetallic Electrides for Ammonia Synthesis.
    Gong Y; Li H; Wu J; Song X; Yang X; Bao X; Han X; Kitano M; Wang J; Hosono H
    J Am Chem Soc; 2022 May; 144(19):8683-8692. PubMed ID: 35507518
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectroscopic identification and catalytic relevance of NH
    Rizzotto V; Chen D; Tabak BM; Yang JY; Ye D; Simon U; Chen P
    Chemosphere; 2020 Jul; 250():126272. PubMed ID: 32109703
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain.
    Wittreich GR; Liu S; Dauenhauer PJ; Vlachos DG
    Sci Adv; 2022 Jan; 8(4):eabl6576. PubMed ID: 35080982
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst.
    Wang X; Peng X; Chen W; Liu G; Zheng A; Zheng L; Ni J; Au CT; Jiang L
    Nat Commun; 2020 Jan; 11(1):653. PubMed ID: 32005833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of iron loading on the performance and structure of Fe/ZSM-5 catalyst for the selective catalytic reduction of NO with NH
    Wang XT; Hu HP; Zhang XY; Su XX; Yang XD
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1706-1715. PubMed ID: 30448951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrocatalytic synthesis of ammonia by surface proton hopping.
    Manabe R; Nakatsubo H; Gondo A; Murakami K; Ogo S; Tsuneki H; Ikeda M; Ishikawa A; Nakai H; Sekine Y
    Chem Sci; 2017 Aug; 8(8):5434-5439. PubMed ID: 28970922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and evaluation of Pd-Sn modified Ru-Ir electrode for denitrification of high chlorine ammonia-nitrogen wastewater.
    Yang ZX; Shang J; Yan GX; Wang YX; Guo SH
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15337-15346. PubMed ID: 34989988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study on the Performance of the Zr-Modified Cu-SSZ-13 Catalyst for Low-Temperature NH
    Du H; Yang S; Li K; Shen Q; Li M; Wang X; Fan C
    ACS Omega; 2022 Dec; 7(49):45144-45152. PubMed ID: 36530236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ real-time diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) study of hydrogen adsorption and desorption on Ir/SiO2 catalyst.
    Hu G; Zhu L; Jia A; Hu X; Xie G; Lu J; Luo M
    Appl Spectrosc; 2012 May; 66(5):600-5. PubMed ID: 22524967
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local Proton Source Enhanced Nitrogen Reduction on a Combined Cobalt-Molybdenum Catalyst for Electrochemical Ammonia Synthesis.
    Chung S; Ju H; Choi M; Yoon D; Lee J
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212676. PubMed ID: 36193684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. IR-VUV spectroscopy of pyridine dimers, trimers and pyridine-ammonia complexes in a supersonic jet.
    Feng JY; Lee YP; Zhu CY; Hsu PJ; Kuo JL; Ebata T
    Phys Chem Chem Phys; 2020 Sep; 22(37):21520-21534. PubMed ID: 32955537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts.
    Chen L; Si Z; Wu X; Weng D; Wu Z
    J Environ Sci (China); 2015 May; 31():240-7. PubMed ID: 25968280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DRIFTS study of ammonia activation over CaO and sulfated CaO for NO reduction by NH3.
    Yang X; Zhao B; Zhuo Y; Gao Y; Chen C; Xu X
    Environ Sci Technol; 2011 Feb; 45(3):1147-51. PubMed ID: 21166388
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Non-dissociative Activation of Dinitrogen to Ammonia over Lithium-Promoted Ruthenium Nanoparticles at Low Pressure.
    Zheng J; Liao F; Wu S; Jones G; Chen TY; Fellowes J; Sudmeier T; McPherson IJ; Wilkinson I; Tsang SCE
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17335-17341. PubMed ID: 31560158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A DFT study of plasma-catalytic ammonia synthesis: the effect of electric fields, excess electrons and catalyst surfaces on N
    Chen S; Wang Y; Li Q; Li K; Li M; Wang F
    Phys Chem Chem Phys; 2023 Feb; 25(5):3920-3929. PubMed ID: 36648094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.