BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37021877)

  • 1. Halides-Enhanced Buried Interfaces for Stable and Extremely Low-Voltage-Deficit Perovskite Solar Cells.
    Deng J; Wei K; Yang L; Lin L; Xiao Y; Cai X; Zhang C; Wu D; Zhang X; Zhang J
    Adv Mater; 2023 Jul; 35(28):e2300233. PubMed ID: 37021877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target Therapy for Buried Interface Enables Stable Perovskite Solar Cells with 25.05% Efficiency.
    Ji X; Bi L; Fu Q; Li B; Wang J; Jeong SY; Feng K; Ma S; Liao Q; Lin FR; Woo HY; Lu L; Jen AK; Guo X
    Adv Mater; 2023 Sep; 35(39):e2303665. PubMed ID: 37459560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buried Interface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Mechanical Stability.
    Zhao D; Zhang C; Ren J; Li S; Wu Y; Sun Q; Hao Y
    Small; 2024 May; 20(19):e2308364. PubMed ID: 38054792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the interfacial properties of halide ions for efficient and stable flexible perovskite solar cells.
    Yi Z; Xiao B; Li X; Luo Y; Jiang Q; Yang J
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):696-704. PubMed ID: 35944300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Functional Regulation on Buried Interface for Achieving Efficient Triple-Cation Perovskite Solar Cells.
    Ding Y; Feng X; Feng E; Chang J; Li H; Long C; Gao Y; Lu S; Yang J
    Small; 2024 Jun; 20(26):e2308836. PubMed ID: 38258401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pushing the Limit of Open-Circuit Voltage Deficit via Modifying Buried Interface in CsPbI
    Xu C; Zhang S; Fan W; Cheng F; Sun H; Kang Z; Zhang Y
    Adv Mater; 2023 Feb; 35(7):e2207172. PubMed ID: 36401565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multifunctional chemical linker in a buried interface for stable and efficient planar perovskite solar cells.
    Geng Q; Xu Z; Song W; Hu Y; Sun G; Wang J; Wang M; Sun T; Tang Y; Zhang S
    Phys Chem Chem Phys; 2022 Sep; 24(36):21697-21704. PubMed ID: 36069602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4-Trifluorophenylammonium Iodide-Based Dual Interfacial Modification Engineering toward Improved Efficiency and Stability of SnO
    Liu T; Guo X; Liu Y; Hou M; Yuan Y; Mai X; Fedorovich KV; Wang N
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6777-6787. PubMed ID: 36709450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of caesium closo-dodecaborate on buried interface for efficient and stable perovskite solar cells.
    Hou W; Yang M; Guo Y; Ma Y; Guo M; Xiao Y; Han G
    J Colloid Interface Sci; 2023 Sep; 645():472-482. PubMed ID: 37156156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An MBene Modulating the Buried SnO
    Zhang Y; Yu B; Sun Y; Zhang J; Su Z; Yu H
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202404385. PubMed ID: 38634433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Effects of Interfacial Energy Level Regulation and Stress Relaxation via a Buried Interface for Highly Efficient Perovskite Solar Cells.
    Fu J; Zhang J; Zhang T; Yuan L; Zhang Z; Jiang Z; Huang Z; Wu T; Yan K; Zhang L; Wang A; Ji W; Zhou Y; Song B
    ACS Nano; 2023 Feb; 17(3):2802-2812. PubMed ID: 36700840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Optimization of Buried Interface by Multifunctional Organic-Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells.
    Liu H; Lu Z; Zhang W; Zhou H; Xia Y; Shi Y; Wang J; Chen R; Xia H; Wang HL
    Nanomicro Lett; 2023 Jun; 15(1):156. PubMed ID: 37337117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimensionality Control of SnO
    Zhao Y; Zhu J; He B; Tang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydentate Ligand Reinforced Chelating to Stabilize Buried Interface toward High-Performance Perovskite Solar Cells.
    Liu B; Zhou Q; Li Y; Chen Y; He D; Ma D; Han X; Li R; Yang K; Yang Y; Lu S; Ren X; Zhang Z; Ding L; Feng J; Yi J; Chen J
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202317185. PubMed ID: 38179844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Indoor Perovskite Solar Cells by In Situ Bottom-Up Crystallization Modulation and Interfacial Passivation.
    Liu C; Yang T; Cai W; Wang Y; Chen X; Wang S; Huang W; Du Y; Wu N; Wang Z; Yang Y; Feng J; Niu T; Ding Z; Zhao K
    Adv Mater; 2024 Jun; 36(24):e2311562. PubMed ID: 38507724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MXene-Regulated Perovskite Vertical Growth for High-Performance Solar Cells.
    Wu C; Fang W; Cheng Q; Wan J; Wen R; Wang Y; Song Y; Li M
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202210970. PubMed ID: 36050600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation.
    Yang L; Feng J; Liu Z; Duan Y; Zhan S; Yang S; He K; Li Y; Zhou Y; Yuan N; Ding J; Liu SF
    Adv Mater; 2022 Jun; 34(24):e2201681. PubMed ID: 35435279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorides, other Halides, and Pseudo-Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells.
    Cheng F; Zhang J; Pauporté T
    ChemSusChem; 2021 Sep; 14(18):3665-3692. PubMed ID: 34328278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging the Buried Interface with Piperazine Dihydriodide Layer for High Performance Inverted Solar Cells.
    Song Q; Gong H; Sun F; Li M; Zhu T; Zhang C; You F; He Z; Li D; Liang C
    Small; 2023 Jul; 19(29):e2208260. PubMed ID: 37029577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SnSe
    Liu S; Hao Y; Sun M; Ren J; Li S; Wu Y; Sun Q; Hao Y
    Small; 2024 May; ():e2402385. PubMed ID: 38742952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.