These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37021971)

  • 21. Laurdan fluorescence spectroscopy reveals a single liquid-crystalline lipid phase and lack of thermotropic phase transitions in the plasma membrane of living human sperm.
    Palleschi S; Silvestroni L
    Biochim Biophys Acta; 1996 Mar; 1279(2):197-202. PubMed ID: 8603087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic studies on planar supported membranes using a widefield fluorescence LAURDAN Generalized Polarization imaging approach.
    Brewer J; Thoke HS; Stock RP; Bagatolli LA
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):888-895. PubMed ID: 28126480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redesigning Solvatochromic Probe Laurdan for Imaging Lipid Order Selectively in Cell Plasma Membranes.
    Danylchuk DI; Sezgin E; Chabert P; Klymchenko AS
    Anal Chem; 2020 Nov; 92(21):14798-14805. PubMed ID: 33044816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer.
    Watanabe N; Goto Y; Suga K; Nyholm TKM; Slotte JP; Umakoshi H
    Biophys J; 2019 Mar; 116(5):874-883. PubMed ID: 30819567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of osmotic stress on live cell plasma membranes, probed via Laurdan general polarization measurements.
    Zapata-Mercado E; Azarova EV; Hristova K
    Biophys J; 2022 Jun; 121(12):2411-2418. PubMed ID: 35596525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The spectral phasor approach to resolving membrane order with environmentally sensitive dyes.
    Mangiarotti A; Dimova R
    Methods Enzymol; 2024; 700():105-126. PubMed ID: 38971597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Melittin Induces Local Order Changes in Artificial and Biological Membranes as Revealed by Spectral Analysis of Laurdan Fluorescence.
    Zorilă B; Necula G; Radu M; Bacalum M
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33171598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane effects of lysozyme amyloid fibrils.
    Kastorna A; Trusova V; Gorbenko G; Kinnunen P
    Chem Phys Lipids; 2012 Apr; 165(3):331-7. PubMed ID: 22406142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Will C-Laurdan dethrone Laurdan in fluorescent solvent relaxation techniques for lipid membrane studies?
    Barucha-Kraszewska J; Kraszewski S; Ramseyer C
    Langmuir; 2013 Jan; 29(4):1174-82. PubMed ID: 23311388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-photon fluorescent probe for lipid raft imaging: C-laurdan.
    Kim HM; Choo HJ; Jung SY; Ko YG; Park WH; Jeon SJ; Kim CH; Joo T; Cho BR
    Chembiochem; 2007 Mar; 8(5):553-9. PubMed ID: 17300111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of rabbit erythrocytes membrane solubilization by sucrose monomyristate using laurdan and phasor analysis.
    Günther G; Herlax V; Lillo MP; Sandoval-Altamirano C; Belmar LN; Sánchez SA
    Colloids Surf B Biointerfaces; 2018 Jan; 161():375-385. PubMed ID: 29102849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane.
    Knippenberg S; De K; Aisenbrey C; Bechinger B; Osella S
    Cells; 2024 Jul; 13(15):. PubMed ID: 39120265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types.
    Parasassi T; Loiero M; Raimondi M; Ravagnan G; Gratton E
    Biochim Biophys Acta; 1993 Dec; 1153(2):143-54. PubMed ID: 8274484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface properties of cholesterol-containing membranes detected by Prodan fluorescence.
    Krasnowska EK; Bagatolli LA; Gratton E; Parasassi T
    Biochim Biophys Acta; 2001 Apr; 1511(2):330-40. PubMed ID: 11286976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coexistence of domains with distinct order and polarity in fluid bacterial membranes.
    Vanounou S; Pines D; Pines E; Parola AH; Fishov I
    Photochem Photobiol; 2002 Jul; 76(1):1-11. PubMed ID: 12126299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational Characterization of Novel Malononitrile Variants of Laurdan with Improved Photophysical Properties for Sensing in Membranes.
    Kofod CS; Prioli S; Hornum M; Kongsted J; Reinholdt P
    J Phys Chem B; 2020 Oct; 124(43):9526-9534. PubMed ID: 33074683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations.
    Parasassi T; Giusti AM; Raimondi M; Gratton E
    Biophys J; 1995 May; 68(5):1895-902. PubMed ID: 7612832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.