These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 37022004)
1. Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and Machine Learning. Zhu L; Spachos P; Ng PC; Yu Y; Wang Y; Plataniotis K; Hatzinakos D IEEE J Biomed Health Inform; 2023 May; 27(5):2155-2165. PubMed ID: 37022004 [TBL] [Abstract][Full Text] [Related]
2. Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable. S AA; P S; V S; S SK; A S; Akl TJ; P PS; Sivaprakasam M IEEE J Biomed Health Inform; 2020 Jan; 24(1):92-100. PubMed ID: 30668508 [TBL] [Abstract][Full Text] [Related]
3. Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands. Regalia G; Onorati F; Lai M; Caborni C; Picard RW Epilepsy Res; 2019 Jul; 153():79-82. PubMed ID: 30846346 [TBL] [Abstract][Full Text] [Related]
4. A machine-learning approach for stress detection using wearable sensors in free-living environments. Abd Al-Alim M; Mubarak R; M Salem N; Sadek I Comput Biol Med; 2024 Sep; 179():108918. PubMed ID: 39029434 [TBL] [Abstract][Full Text] [Related]
5. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Can YS; Arnrich B; Ersoy C J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538 [TBL] [Abstract][Full Text] [Related]
6. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657 [TBL] [Abstract][Full Text] [Related]
7. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study. Sano A; Taylor S; McHill AW; Phillips AJ; Barger LK; Klerman E; Picard R J Med Internet Res; 2018 Jun; 20(6):e210. PubMed ID: 29884610 [TBL] [Abstract][Full Text] [Related]
8. Stress Detection Using Frequency Spectrum Analysis of Wrist-Measured Electrodermal Activity. Stržinar Ž; Sanchis A; Ledezma A; Sipele O; Pregelj B; Škrjanc I Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679760 [TBL] [Abstract][Full Text] [Related]
9. Signal quality and patient experience with wearable devices for epilepsy management. Nasseri M; Nurse E; Glasstetter M; Böttcher S; Gregg NM; Laks Nandakumar A; Joseph B; Pal Attia T; Viana PF; Bruno E; Biondi A; Cook M; Worrell GA; Schulze-Bonhage A; Dümpelmann M; Freestone DR; Richardson MP; Brinkmann BH Epilepsia; 2020 Nov; 61 Suppl 1():S25-S35. PubMed ID: 32497269 [TBL] [Abstract][Full Text] [Related]
10. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry. Gilmore J; Nasseri M Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers. Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-enabled detection of attention-deficit/hyperactivity disorder with multimodal physiological data: a case-control study. Andrikopoulos D; Vassiliou G; Fatouros P; Tsirmpas C; Pehlivanidis A; Papageorgiou C BMC Psychiatry; 2024 Aug; 24(1):547. PubMed ID: 39103819 [TBL] [Abstract][Full Text] [Related]
13. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
14. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning. Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695 [TBL] [Abstract][Full Text] [Related]
15. Detection of Parkinson's Disease Using Wrist Accelerometer Data and Passive Monitoring. Rastegari E; Ali H; Marmelat V Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501823 [TBL] [Abstract][Full Text] [Related]
16. Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Meisel C; El Atrache R; Jackson M; Schubach S; Ufongene C; Loddenkemper T Epilepsia; 2020 Dec; 61(12):2653-2666. PubMed ID: 33040327 [TBL] [Abstract][Full Text] [Related]
17. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Can YS; Chalabianloo N; Ekiz D; Ersoy C Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456 [TBL] [Abstract][Full Text] [Related]
18. Detecting Subclinical Social Anxiety Using Physiological Data From a Wrist-Worn Wearable: Small-Scale Feasibility Study. Shaukat-Jali R; van Zalk N; Boyle DE JMIR Form Res; 2021 Oct; 5(10):e32656. PubMed ID: 34617905 [TBL] [Abstract][Full Text] [Related]
20. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal. Bin Heyat MB; Akhtar F; Abbas SJ; Al-Sarem M; Alqarafi A; Stalin A; Abbasi R; Muaad AY; Lai D; Wu K Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]