These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37022004)

  • 21. Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection.
    Kundinger T; Sofra N; Riener A
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Support Vector Machines for the Identification of Stress Condition from Electrodermal Activity.
    Sánchez-Reolid R; Martínez-Rodrigo A; López MT; Fernández-Caballero A
    Int J Neural Syst; 2020 Jul; 30(7):2050031. PubMed ID: 32507059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearables measuring electrodermal activity to assess perceived stress in care: a scoping review.
    Klimek A; Mannheim I; Schouten G; Wouters EJM; Peeters MWH
    Acta Neuropsychiatr; 2023 Mar; ():1-11. PubMed ID: 36960675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Usability Study of Physiological Measurement in School Using Wearable Sensors.
    Thammasan N; Stuldreher IV; Schreuders E; Giletta M; Brouwer AM
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling.
    Vasile F; Vizziello A; Brondino N; Savazzi P
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of Spectral Indices of Electrodermal Activity with a Wearable Device.
    McNaboe RQ; Hossain MB; Kong Y; Chon KH; Posada-Quintero HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6991-6994. PubMed ID: 34892712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning.
    Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feature Augmented Hybrid CNN for Stress Recognition Using Wrist-based Photoplethysmography Sensor.
    Rashid N; Chen L; Dautta M; Jimenez A; Tseng P; Al Faruque MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2374-2377. PubMed ID: 34891759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions.
    Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M
    Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feature Augmented Hybrid CNN for Stress Recognition Using Wrist-based Photoplethysmography Sensor.
    Rashid N; Chen L; Dautta M; Jimenez A; Tseng P; Faruque MAA
    ArXiv; 2021 Aug; ():. PubMed ID: 34373840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review.
    Sánchez-Reolid R; López de la Rosa F; Sánchez-Reolid D; López MT; Fernández-Caballero A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discriminating stress from cognitive load using a wearable EDA device.
    Setz C; Arnrich B; Schumm J; La Marca R; Tröster G; Ehlert U
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):410-7. PubMed ID: 19906598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seizure detection using wearable sensors and machine learning: Setting a benchmark.
    Tang J; El Atrache R; Yu S; Asif U; Jackson M; Roy S; Mirmomeni M; Cantley S; Sheehan T; Schubach S; Ufongene C; Vieluf S; Meisel C; Harrer S; Loddenkemper T
    Epilepsia; 2021 Aug; 62(8):1807-1819. PubMed ID: 34268728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors.
    Hegde N; Bries M; Swibas T; Melanson E; Sazonov E; Hegde N; Bries M; Swibas T; Melanson E; Sazonov E
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):979-988. PubMed ID: 28783651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic identification of artifacts in electrodermal activity data.
    Taylor S; Jaques N; Chen W; Fedor S; Sano A; Picard R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1934-7. PubMed ID: 26736662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward Dynamically Adaptive Simulation: Multimodal Classification of User Expertise Using Wearable Devices.
    Ross K; Sarkar P; Rodenburg D; Ruberto A; Hungler P; Szulewski A; Howes D; Etemad A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and Implementation of an Ultra-Low Resource Electrodermal Activity Sensor for Wearable Applications
    Pope GC; Halter RJ
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning to quantify habitual physical activity in children with cerebral palsy.
    Goodlich BI; Armstrong EL; Horan SA; Baque E; Carty CP; Ahmadi MN; Trost SG
    Dev Med Child Neurol; 2020 Sep; 62(9):1054-1060. PubMed ID: 32420632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.