These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37022004)
41. Machine learning to quantify habitual physical activity in children with cerebral palsy. Goodlich BI; Armstrong EL; Horan SA; Baque E; Carty CP; Ahmadi MN; Trost SG Dev Med Child Neurol; 2020 Sep; 62(9):1054-1060. PubMed ID: 32420632 [TBL] [Abstract][Full Text] [Related]
42. A Method for Stress Detection Using Empatica E4 Bracelet and Machine-Learning Techniques. Campanella S; Altaleb A; Belli A; Pierleoni P; Palma L Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050625 [TBL] [Abstract][Full Text] [Related]
43. Validity of electrodermal activity-based measures of sympathetic nervous system activity from a wrist-worn device. van der Mee DJ; Gevonden MJ; Westerink JHDM; de Geus EJC Int J Psychophysiol; 2021 Oct; 168():52-64. PubMed ID: 34418464 [TBL] [Abstract][Full Text] [Related]
44. Exploration of physiological sensors, features, and machine learning models for pain intensity estimation. Pouromran F; Radhakrishnan S; Kamarthi S PLoS One; 2021; 16(7):e0254108. PubMed ID: 34242325 [TBL] [Abstract][Full Text] [Related]
46. Predicting Office Workers' Productivity: A Machine Learning Approach Integrating Physiological, Behavioral, and Psychological Indicators. Awada M; Becerik-Gerber B; Lucas G; Roll SC Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960394 [TBL] [Abstract][Full Text] [Related]
47. A machine learning approach for semi-automatic assessment of IADL dependence in older adults with wearable sensors. Garcia-Moreno FM; Bermudez-Edo M; Rodríguez-García E; Pérez-Mármol JM; Garrido JL; Rodríguez-Fórtiz MJ Int J Med Inform; 2022 Jan; 157():104625. PubMed ID: 34763192 [TBL] [Abstract][Full Text] [Related]
48. Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning. P SK; Agastinose Ronickom JF Int J Neural Syst; 2024 May; 34(5):2450027. PubMed ID: 38511233 [TBL] [Abstract][Full Text] [Related]
49. Transfer learning from ECG to PPG for improved sleep staging from wrist-worn wearables. Li Q; Li Q; Cakmak AS; Da Poian G; Bliwise DL; Vaccarino V; Shah AJ; Clifford GD Physiol Meas; 2021 May; 42(4):. PubMed ID: 33761477 [No Abstract] [Full Text] [Related]
50. Electrodermal Activity Sensor for Classification of Calm/Distress Condition. Zangróniz R; Martínez-Rodrigo A; Pastor JM; López MT; Fernández-Caballero A Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29023403 [TBL] [Abstract][Full Text] [Related]
51. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device? Lui J; Menon C Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354 [TBL] [Abstract][Full Text] [Related]
52. Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data. Papagiannaki A; Zacharaki EI; Kalouris G; Kalogiannis S; Deltouzos K; Ellul J; Megalooikonomou V Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791587 [TBL] [Abstract][Full Text] [Related]
53. Stress Detection Using Wearable Physiological and Sociometric Sensors. Mozos OM; Sandulescu V; Andrews S; Ellis D; Bellotto N; Dobrescu R; Ferrandez JM Int J Neural Syst; 2017 Mar; 27(2):1650041. PubMed ID: 27440466 [TBL] [Abstract][Full Text] [Related]
54. Automated classification of hand gestures using a wristband and machine learning for possible application in pill intake monitoring. Moccia S; Solbiati S; Khornegah M; Bossi FF; Caiani EG Comput Methods Programs Biomed; 2022 Jun; 219():106753. PubMed ID: 35338885 [TBL] [Abstract][Full Text] [Related]
55. Wrist-Based Electrodermal Activity Monitoring for Stress Detection Using Federated Learning. Almadhor A; Sampedro GA; Abisado M; Abbas S; Kim YJ; Khan MA; Baili J; Cha JH Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112323 [TBL] [Abstract][Full Text] [Related]
56. Classifier Personalization for Activity Recognition Using Wrist Accelerometers. Mannini A; Intille SS IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588 [TBL] [Abstract][Full Text] [Related]
57. Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning. Nasseri M; Pal Attia T; Joseph B; Gregg NM; Nurse ES; Viana PF; Schulze-Bonhage A; Dümpelmann M; Worrell G; Freestone DR; Richardson MP; Brinkmann BH J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33730713 [No Abstract] [Full Text] [Related]
58. Real-Time High-Level Acute Pain Detection Using a Smartphone and a Wrist-Worn Electrodermal Activity Sensor. Kong Y; Posada-Quintero HF; Chon KH Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34201268 [TBL] [Abstract][Full Text] [Related]
59. A Shrewd Artificial Neural Network-Based Hybrid Model for Pervasive Stress Detection of Students Using Galvanic Skin Response and Electrocardiogram Signals. Tiwari S; Agarwal S Big Data; 2021 Dec; 9(6):427-442. PubMed ID: 34851743 [TBL] [Abstract][Full Text] [Related]
60. Overview of Artificial Intelligence-Driven Wearable Devices for Diabetes: Scoping Review. Ahmed A; Aziz S; Abd-Alrazaq A; Farooq F; Sheikh J J Med Internet Res; 2022 Aug; 24(8):e36010. PubMed ID: 35943772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]