These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 37022087)

  • 21. Interfacial-entropy-driven thermophoretic tweezers.
    Lin L; Peng X; Mao Z; Wei X; Xie C; Zheng Y
    Lab Chip; 2017 Sep; 17(18):3061-3070. PubMed ID: 28805878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-Dimensional Optothermal Manipulation of Light-Absorbing Particles in Phase-Change Gel Media.
    Kollipara PS; Wu Z; Yao K; Lin D; Ju Z; Zhang X; Jiang T; Ding H; Fang J; Li J; Korgel BA; Redwing JM; Yu G; Zheng Y
    ACS Nano; 2024 Mar; 18(11):8062-8072. PubMed ID: 38456693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opto-Thermoelectric Tweezers: Principles and Applications.
    Pughazhendi A; Chen Z; Wu Z; Li J; Zheng Y
    Front Phys; 2020; 8():. PubMed ID: 38031585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal gradient induced tweezers for the manipulation of particles and cells.
    Chen J; Cong H; Loo J; Kang Z; Tang M; Zhang H; Wu SY; Kong SK; Ho HP
    Sci Rep; 2016 Nov; 6():35814. PubMed ID: 27853191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amphibious Hybrid Laser Tweezers for Fluid and Solid Domains.
    Zhu R; Shen T; Gu Z; Shi Z; Dou L; Liu Y; Zhuang S; Gu F
    ACS Nano; 2024 Aug; 18(34):23232-23242. PubMed ID: 39145514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optothermal generation, trapping, and manipulation of microbubbles.
    Sarabia-Alonso JA; Ortega-Mendoza JG; Ramírez-San-Juan JC; Zaca-Morán P; Ramírez-Ramírez J; Padilla-Vivanco A; Muñoz-Pérez FM; Ramos-García R
    Opt Express; 2020 Jun; 28(12):17672-17682. PubMed ID: 32679972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Opto-thermoelectric speckle tweezers.
    Kotnala A; Kollipara PS; Zheng Y
    Nanophotonics; 2020 Apr; 9(4):927-933. PubMed ID: 34290954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows.
    Rodrigo JA; Angulo M; Alieva T
    Light Sci Appl; 2020; 9():181. PubMed ID: 33133521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Target trapping and in situ single-cell genetic marker detection with a focused optical beam.
    Cong H; Loo J; Chen J; Wang Y; Kong SK; Ho HP
    Biosens Bioelectron; 2019 May; 133():236-242. PubMed ID: 30953882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools.
    Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro-Dumbbells-A Versatile Tool for Optical Tweezers.
    Lamperska W; Drobczyński S; Nawrot M; Wasylczyk P; Masajada J
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles.
    Shan X; Wang F; Wang D; Wen S; Chen C; Di X; Nie P; Liao J; Liu Y; Ding L; Reece PJ; Jin D
    Nat Nanotechnol; 2021 May; 16(5):531-537. PubMed ID: 33603239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Universal optothermal micro/nanoscale rotors.
    Ding H; Kollipara PS; Kim Y; Kotnala A; Li J; Chen Z; Zheng Y
    Sci Adv; 2022 Jun; 8(24):eabn8498. PubMed ID: 35704582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optothermal grid activation of microflow with magnetic nanoparticle thermophoresis for microfluidics.
    Zablotsky DY; Mezulis A; Blums E; Maiorov MM
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2217):20200310. PubMed ID: 34974722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow-assisted single-beam optothermal manipulation of microparticles.
    Liu Y; Poon AW
    Opt Express; 2010 Aug; 18(17):18483-91. PubMed ID: 20721243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assisted optothermal trapping of gold nanorods under two-photon excitation.
    Chen H; Gratton E; Digman MA
    Methods Appl Fluoresc; 2016 Sep; 4(3):035003. PubMed ID: 28355163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation.
    Zhang S; Xu B; Elsayed M; Nan F; Liang W; Valley JK; Liu L; Huang Q; Wu MC; Wheeler AR
    Chem Soc Rev; 2022 Nov; 51(22):9203-9242. PubMed ID: 36285556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optothermal Microparticle Oscillator Induced by Marangoni and Thermal Convection.
    Meng C; Lu F; Zhang NQ; Zhou J; Yu P; Zhong MC
    Langmuir; 2024 Apr; 40(14):7463-7470. PubMed ID: 38551336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.