These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Opto-thermoelectric microswimmers. Peng X; Chen Z; Kollipara PS; Liu Y; Fang J; Lin L; Zheng Y Light Sci Appl; 2020; 9():141. PubMed ID: 32864116 [TBL] [Abstract][Full Text] [Related]
46. Plasmonic tweezers for optical manipulation and biomedical applications. Tan H; Hu H; Huang L; Qian K Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343 [TBL] [Abstract][Full Text] [Related]
47. Optical manipulation: advances for biophotonics in the 21st century. Corsetti S; Dholakia K J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34235899 [TBL] [Abstract][Full Text] [Related]
48. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437 [TBL] [Abstract][Full Text] [Related]
49. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation. Simmons CS; Knouf EC; Tewari M; Lin LY J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841 [TBL] [Abstract][Full Text] [Related]
50. Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens. Markovich H; Shishkin II; Hendler N; Ginzburg P Nano Lett; 2018 Aug; 18(8):5024-5029. PubMed ID: 29949377 [TBL] [Abstract][Full Text] [Related]
51. Optical trapping and manipulation for single-particle spectroscopy and microscopy. Chen Z; Cai Z; Liu W; Yan Z J Chem Phys; 2022 Aug; 157(5):050901. PubMed ID: 35933217 [TBL] [Abstract][Full Text] [Related]
52. Pulse laser assisted optical tweezers for biomedical applications. Sugiura T; Maeda S; Honda A Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4479-81. PubMed ID: 23366922 [TBL] [Abstract][Full Text] [Related]
53. Optical Actuation of Nanoparticle-Loaded Liquid-Liquid Interfaces for Active Photonics. Kim Y; Yao K; Ponce C; Zheng Y ACS Nano; 2024 Jun; 18(24):15627-15637. PubMed ID: 38850254 [TBL] [Abstract][Full Text] [Related]
54. Manipulation of Biological Cells Using a Robot-Aided Optical Tweezers System. Xie M; Shakoor A; Wu C Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424178 [TBL] [Abstract][Full Text] [Related]
55. Trapping and manipulation of bubbles with holographic optical tweezers. Molina-Jiménez JM; Morales-Cruzado B; Briceño-Ahumada Z; Carrasco-Fadanelli V; Sarmiento-Gómez E Soft Matter; 2024 Feb; 20(9):2032-2039. PubMed ID: 38334987 [TBL] [Abstract][Full Text] [Related]
57. A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage. Liang S; Cao Y; Dai Y; Wang F; Bai X; Song B; Zhang C; Gan C; Arai F; Feng L Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800834 [TBL] [Abstract][Full Text] [Related]
58. Nano-Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles. Kolbow JD; Lindquist NC; Ertsgaard CT; Yoo D; Oh SH Chemphyschem; 2021 Jul; 22(14):1409-1420. PubMed ID: 33797179 [TBL] [Abstract][Full Text] [Related]
59. Optical Forces: From Fundamental to Biological Applications. Xin H; Li Y; Liu YC; Zhang Y; Xiao YF; Li B Adv Mater; 2020 Sep; 32(37):e2001994. PubMed ID: 32715536 [TBL] [Abstract][Full Text] [Related]
60. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations. Ortiz-Rivero E; Labrador-Páez L; Rodríguez-Sevilla P; Haro-González P Front Chem; 2020; 8():593398. PubMed ID: 33240853 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]