These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37022250)

  • 1. Accurate Real-Time Joint Torque Estimation for Dynamic Prediction of Human Locomotion.
    Dinovitzer H; Shushtari M; Arami A
    IEEE Trans Biomed Eng; 2023 Aug; 70(8):2289-2297. PubMed ID: 37022250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A probabilistic method to estimate gait kinetics in the absence of ground reaction force measurements.
    Tanghe K; Afschrift M; Jonkers I; De Groote F; De Schutter J; Aertbeliën E
    J Biomech; 2019 Nov; 96():109327. PubMed ID: 31526586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Torque Prediction via Hybrid Neuromusculoskeletal Modelling during Gait Using Statistical Ground Reaction Estimates: An Exploratory Study.
    Lam SK; Vujaklija I
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint torques estimation in human gait based on Gaussian process.
    Yang J; Wang Z; Sun T
    Technol Health Care; 2023; 31(1):197-204. PubMed ID: 35964218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependent-Gaussian-Process-Based Learning of Joint Torques Using Wearable Smart Shoes for Exoskeleton.
    Yang J; Yin Y
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of interjoint coordination during the swing phase of normal gait at different speeds.
    Shemmell J; Johansson J; Portra V; Gottlieb GL; Thomas JS; Corcos DM
    J Neuroeng Rehabil; 2007 Apr; 4():10. PubMed ID: 17466065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics.
    Piovesan D; Pierobon A; Dizio P; Lackner JR
    J Biomech Eng; 2011 Mar; 133(3):031003. PubMed ID: 21303179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spring-loaded inverted pendulum modeling improves neural network estimation of ground reaction forces.
    Kim B; Lim H; Park S
    J Biomech; 2020 Dec; 113():110069. PubMed ID: 33142204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques.
    McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation-based biomechanical assessment of unpowered exoskeletons for running.
    Aftabi H; Nasiri R; Ahmadabadi MN
    Sci Rep; 2021 Jun; 11(1):11846. PubMed ID: 34088911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.