BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37022332)

  • 1. Generating 3D Multispectral Point Clouds of Plants with Fusion of Snapshot Spectral and RGB-D Images.
    Xie P; Du R; Ma Z; Cen H
    Plant Phenomics; 2023; 5():0040. PubMed ID: 37022332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nondestructive Determination of Nitrogen, Phosphorus and Potassium Contents in Greenhouse Tomato Plants Based on Multispectral Three-Dimensional Imaging.
    Sun G; Ding Y; Wang X; Lu W; Sun Y; Yu H
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving High-Throughput Phenotyping Using Fusion of Close-Range Hyperspectral Camera and Low-Cost Depth Sensor.
    Huang P; Luo X; Jin J; Wang L; Zhang L; Liu J; Zhang Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of Leaf Angle Impacts on Plant Reflectance Spectra Using Fusion of Hyperspectral Images and 3D Point Clouds.
    Zhang L; Jin J; Wang L; Rehman TU; Gee MT
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Phenotyping of Fire Blight Disease Symptoms Using Sensing Techniques in Apple.
    Jarolmasjed S; Sankaran S; Marzougui A; Kostick S; Si Y; Quirós Vargas JJ; Evans K
    Front Plant Sci; 2019; 10():576. PubMed ID: 31134116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement Method Based on Multispectral Three-Dimensional Imaging for the Chlorophyll Contents of Greenhouse Tomato Plants.
    Sun G; Wang X; Sun Y; Ding Y; Lu W
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic detection of three-dimensional crop phenotypes based on a consumer-grade RGB-D camera.
    Song P; Li Z; Yang M; Shao Y; Pu Z; Yang W; Zhai R
    Front Plant Sci; 2023; 14():1097725. PubMed ID: 36778701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Sorghum Plant and Head Features from Multispectral UAV Imagery.
    Zhao Y; Zheng B; Chapman SC; Laws K; George-Jaeggli B; Hammer GL; Jordan DR; Potgieter AB
    Plant Phenomics; 2021; 2021():9874650. PubMed ID: 34676373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of 3D distribution of potato plant CWSI based on thermal infrared image and binocular stereovision system.
    Wang L; Miao Y; Han Y; Li H; Zhang M; Peng C
    Front Plant Sci; 2022; 13():1104390. PubMed ID: 36762177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants.
    Wu S; Wen W; Xiao B; Guo X; Du J; Wang C; Wang Y
    Front Plant Sci; 2019; 10():248. PubMed ID: 30899271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction.
    Wu S; Wen W; Gou W; Lu X; Zhang W; Zheng C; Xiang Z; Chen L; Guo X
    Front Plant Sci; 2022; 13():897746. PubMed ID: 36003825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Registration of spatio-temporal point clouds of plants for phenotyping.
    Chebrolu N; Magistri F; Läbe T; Stachniss C
    PLoS One; 2021; 16(2):e0247243. PubMed ID: 33630896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semantic Segmentation of Natural Materials on a Point Cloud Using Spatial and Multispectral Features.
    Jurado JM; Cárdenas JL; Ogayar CJ; Ortega L; Feito FR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications.
    Lenk S; Chaerle L; Pfündel EE; Langsdorf G; Hagenbeek D; Lichtenthaler HK; Van Der Straeten D; Buschmann C
    J Exp Bot; 2007; 58(4):807-14. PubMed ID: 17118970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection.
    Gong L; Zhu C; Luo Y; Fu X
    Appl Spectrosc; 2023 Feb; 77(2):200-209. PubMed ID: 36323648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of maize stem diameter by using RGB-D cameras' depth information under selected field condition.
    Zhou J; Cui M; Wu Y; Gao Y; Tang Y; Jiang B; Wu M; Zhang J; Hou L
    Front Plant Sci; 2024; 15():1371252. PubMed ID: 38711601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.