These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37022332)

  • 21. Complete region of interest reconstruction by fusing multiview deformable three-dimensional transesophageal echocardiography images.
    Mao Z; Zhao L; Huang S; Jin T; Fan Y; Lee AP
    Med Phys; 2023 Jan; 50(1):61-73. PubMed ID: 35924929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral Reflectance Measurements.
    Stamford J; Kasznicki P; Lawson T
    Methods Mol Biol; 2024; 2790():333-353. PubMed ID: 38649579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a multispectral fluorescence LiDAR for point cloud segmentation of plants.
    Zheng K; Lin H; Hong X; Che H; Ma X; Wei X; Mei L
    Opt Express; 2023 May; 31(11):18613-18629. PubMed ID: 37381570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry.
    Andújar D; Calle M; Fernández-Quintanilla C; Ribeiro Á; Dorado J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Point Cloud Completion of Plant Leaves under Occlusion Conditions Based on Deep Learning.
    Chen H; Liu S; Wang C; Wang C; Gong K; Li Y; Lan Y
    Plant Phenomics; 2023; 5():0117. PubMed ID: 38239737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemometric approaches for calibrating high-throughput spectral imaging setups to support digital plant phenotyping by calibrating and transferring spectral models from a point spectrometer.
    Mishra P
    Anal Chim Acta; 2021 Dec; 1187():339154. PubMed ID: 34753582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning to Recover Spectral Reflectance From RGB Images.
    Huo D; Wang J; Qian Y; Yang YH
    IEEE Trans Image Process; 2024; 33():3174-3186. PubMed ID: 38687649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].
    Zhao YG; Ma LL; Li CR; Zhu XH; Tang LL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1763-9. PubMed ID: 26717721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yield prediction by machine learning from UAS-based mulit-sensor data fusion in soybean.
    Herrero-Huerta M; Rodriguez-Gonzalvez P; Rainey KM
    Plant Methods; 2020; 16():78. PubMed ID: 32514286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction.
    Wu S; Wen W; Wang Y; Fan J; Wang C; Gou W; Guo X
    Plant Phenomics; 2020; 2020():1848437. PubMed ID: 33313542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.
    Xia F; Quan L; Lou Z; Sun D; Li H; Lv X
    Front Plant Sci; 2022; 13():938604. PubMed ID: 35937335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging.
    Khan Z; Rahimi-Eichi V; Haefele S; Garnett T; Miklavcic SJ
    Plant Methods; 2018; 14():20. PubMed ID: 29563961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multispectral camera as spatio-spectrophotometer under uncontrolled illumination.
    Khan HA; Thomas JB; Hardeberg JY; Laligant O
    Opt Express; 2019 Jan; 27(2):1051-1070. PubMed ID: 30696177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperspectral imaging: a novel approach for plant root phenotyping.
    Bodner G; Nakhforoosh A; Arnold T; Leitner D
    Plant Methods; 2018; 14():84. PubMed ID: 30305838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A spatio temporal spectral framework for plant stress phenotyping.
    Khanna R; Schmid L; Walter A; Nieto J; Siegwart R; Liebisch F
    Plant Methods; 2019; 15():13. PubMed ID: 30774703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Open-Source Package for Thermal and Multispectral Image Analysis for Plants in Glasshouse.
    Sharma N; Banerjee BP; Hayden M; Kant S
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.
    Paulus S; Dupuis J; Mahlein AK; Kuhlmann H
    BMC Bioinformatics; 2013 Jul; 14():238. PubMed ID: 23890277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.