These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37022335)

  • 21. The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue.
    Schmidt MP; Siciliano SD; Peak D
    Chemosphere; 2021 Aug; 276():130150. PubMed ID: 33721632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.
    Chong MF; Lee KP; Chieng HJ; Syazwani Binti Ramli II
    Water Res; 2009 Jul; 43(13):3326-34. PubMed ID: 19487007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unique metalloid uptake on microplastics: The interaction between boron and microplastics in aquatic environment.
    Wang H; Huang W; Zhang Y; Wang C; Jiang H
    Sci Total Environ; 2021 Dec; 800():149668. PubMed ID: 34426325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitosan Hydrogel Beads Supported with Ceria for Boron Removal.
    Kluczka J; Dudek G; Kazek-Kęsik A; Gnus M
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30925788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(II) and a positively charged dye.
    Sehaqui H; Perez de Larraya U; Tingaut P; Zimmermann T
    Soft Matter; 2015 Jul; 11(26):5294-300. PubMed ID: 26052685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eggshell membrane as a novel bio sorbent for remediation of boron from desalinated water.
    Al-Ghouti MA; Khan M
    J Environ Manage; 2018 Feb; 207():405-416. PubMed ID: 29190483
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Murakami M; Shimizu T; Tansho M; Takano Y
    Sci Technol Adv Mater; 2008 Dec; 9(4):044103. PubMed ID: 27878016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A systematic study of cellulose-reactive anionic dye removal using a sustainable bioadsorbent.
    Teshager FM; Habtu NG; Mequanint K
    Chemosphere; 2022 Sep; 303(Pt 2):135024. PubMed ID: 35618062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New insights in the use of a strong cationic resin in dye adsorption.
    Santander P; Oyarce E; Sánchez J
    Water Sci Technol; 2020 Feb; 81(4):773-780. PubMed ID: 32460280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies.
    Lin X; Huang Q; Qi G; Xiong L; Huang C; Chen X; Li H; Chen X
    Chemosphere; 2017 Mar; 171():231-239. PubMed ID: 28024208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification of acidic lignocellulose hydrolysate using anion-exchange resin: Multicomponent adsorption, kinetic and thermodynamic study.
    Han J; Xu B; Wang H; Huang G; Zhang X; Xu Y
    Bioresour Technol; 2022 May; 351():126979. PubMed ID: 35276375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes.
    Ma M; Liu Z; Hui L; Shang Z; Yuan S; Dai L; Liu P; Liu X; Ni Y
    Int J Biol Macromol; 2019 Oct; 139():640-646. PubMed ID: 31381920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Modification of Microcrystalline Cellulose with Ethylenediamine for use as Adsorbent for Removal Amitriptyline Drug from Environment.
    Bezerra RDS; Leal RC; da Silva MS; Morais AIS; Marques THC; Osajima JA; Meneguin AB; da S Barud H; C da Silva Filho E
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable phosphorylated microcrystalline cellulose toward enhanced removal performance of methylene blue.
    Said HA; Ait Bourhim I; Ouarga A; Iraola-Arregui I; Lahcini M; Barroug A; Noukrati H; Ben Youcef H
    Int J Biol Macromol; 2023 Jan; 225():1107-1118. PubMed ID: 36442568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross-linked dithiocarbamate-modified cellulose with enhanced thermal stability and dispersibility as a sorbent for arsenite removal.
    Nakakubo K; Endo M; Sakai Y; Biswas FB; Wong KH; Mashio AS; Taniguchi T; Nishimura T; Maeda K; Hasegawa H
    Chemosphere; 2022 Nov; 307(Pt 1):135671. PubMed ID: 35842048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of boron from aqueous solution by adsorption on Al2O3 based materials using full factorial design.
    Seki Y; Seyhan S; Yurdakoc M
    J Hazard Mater; 2006 Nov; 138(1):60-6. PubMed ID: 16784808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: Characterization and application for methylene blue adsorption.
    Dai H; Chen Y; Ma L; Zhang Y; Cui B
    Int J Biol Macromol; 2021 Nov; 191():129-138. PubMed ID: 34537294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of surface modification on heavy metal adsorption performance and stability of peanut shell and its extracts of cellulose, lignin, and hemicellulose.
    Yu H; Wang J; Yu JX; Wang Y; Chi RA
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26502-26510. PubMed ID: 32367241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal.
    Chen M; Dollar O; Shafer-Peltier K; Randtke S; Waseem S; Peltier E
    Water Res; 2020 Mar; 170():115362. PubMed ID: 31841770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.