These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 37022531)

  • 1. Heat generated during dental treatments affecting intrapulpal temperature: a review.
    Lau XE; Liu X; Chua H; Wang WJ; Dias M; Choi JJE
    Clin Oral Investig; 2023 May; 27(5):2277-2297. PubMed ID: 37022531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ex-vivo model to determine dental pulp responses to heat and light-curing of dental restorative materials.
    Lynch CD; Roberts JL; Al-Shehri A; Milward PJ; Sloan AJ
    J Dent; 2018 Dec; 79():11-18. PubMed ID: 30176259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of simulated pulpal microcirculation on intrapulpal temperature changes following application of heat on tooth surfaces.
    Kodonas K; Gogos C; Tziafas D
    Int Endod J; 2009 Mar; 42(3):247-52. PubMed ID: 19228215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of simulated pulpal fluid circulation on intrapulpal temperature following irradiation with an Nd:YVO4 laser.
    Braun A; Kecsmar S; Krause F; Berthold M; Frentzen M; Frankenberger R; Schelle F
    Lasers Med Sci; 2015 May; 30(4):1197-202. PubMed ID: 24578013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrapulpal heat generation during provisionalization: effect of desensitizer and matrix type.
    Akova T; Ozkomur A; Dundar C; Aytutuldu N
    J Prosthodont; 2008 Feb; 17(2):108-113. PubMed ID: 17971113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermotransduction and heat stress in dental structures during orthodontic debonding : Effectiveness of various cooling strategies.
    Kley P; Frentzen M; Küpper K; Braun A; Kecsmar S; Jäger A; Wolf M
    J Orofac Orthop; 2016 May; 77(3):185-93. PubMed ID: 27103013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different stripping techniques on pulpal temperature: in vitro study.
    Sehgal M; Sharma P; Juneja A; Kumar P; Verma A; Chauhan V
    Dental Press J Orthod; 2019; 24(1):39-43. PubMed ID: 30916247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of composite temperature on in vitro intrapulpal temperature rise.
    Daronch M; Rueggeberg FA; Hall G; De Goes MF
    Dent Mater; 2007 Oct; 23(10):1283-8. PubMed ID: 17197016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of light-enhanced bleaching on in vitro surface and intrapulpal temperature rise.
    Baik JW; Rueggeberg FA; Liewehr FR
    J Esthet Restor Dent; 2001; 13(6):370-8. PubMed ID: 11778856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulp vitality during ultrasonic tooth preparation. Part 2.
    Baldi D; Colombo J; Stacchi C; Menini M; Oronos A; Pera P
    Minerva Stomatol; 2020 Feb; 69(1):21-26. PubMed ID: 32181608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New aerosol-decreasing dental handpiece functions sufficiently decrease pulp temperature: An in vitro study.
    Lau XE; Ma S; Choi JJE
    J Prosthodont; 2024 Mar; 33(3):259-265. PubMed ID: 36918297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in-vitro study to compare the temperature rise in the pulp chamber by direct method using three different provisional restorative materials.
    Piplani A; Suresh Sajjan MC; Ramaraju AV; Tanwani T; Sushma G; Ganathipathi G; Jagdish K; Agrawal A
    J Indian Prosthodont Soc; 2016; 16(1):36-41. PubMed ID: 27134426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface and intra-pulpal temperature rises during tooth bleaching: an in vitro study.
    Sulieman M; Addy M; Rees JS
    Br Dent J; 2005 Jul; 199(1):37-40; discussion 32. PubMed ID: 16003425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrapulpal Temperature Rise During Light Activation of Restorative Composites in a Primary Molar.
    Vinall CV; Garcia-Silva TC; Lou JSB; Wells MH; Tantbirojn D; Versluis A
    Pediatr Dent; 2017 May; 39(3):125-130. PubMed ID: 28583237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations.
    Michalakis K; Pissiotis A; Hirayama H; Kang K; Kafantaris N
    J Prosthet Dent; 2006 Dec; 96(6):418-23. PubMed ID: 17174659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a device to lower pulpal temperatures in vivo.
    Goodis HE; White JM; Watanabe LG
    J Appl Biomater; 1991; 2(1):49-54. PubMed ID: 10149063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Three Different Cooling and Insulation Techniques on Pulp Chamber Temperature during Direct Temporization with Polymethyl methacrylate-based Resin.
    Kaushik A; Singh RR; Rani P; Kumar GV; Khurana PR; Kaur T
    J Contemp Dent Pract; 2021 Jun; 22(6):644-649. PubMed ID: 34393121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro study of heat production during power reduction of equine mandibular teeth.
    Allen ML; Baker GJ; Freeman DE; Holmes KR; Marretta SM; Scoggins RD; Constable P
    J Am Vet Med Assoc; 2004 Apr; 224(7):1128-32. PubMed ID: 15074859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of simulated pulpal blood flow rate on the rise in pulp chamber temperature during direct fabrication of exothermic provisional restorations.
    Farah RI
    Int Endod J; 2017 Nov; 50(11):1097-1103. PubMed ID: 27977866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulpal temperature increases with Er:YAG laser and high-speed handpieces.
    Cavalcanti BN; Lage-Marques JL; Rode SM
    J Prosthet Dent; 2003 Nov; 90(5):447-51. PubMed ID: 14586308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.