BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37022871)

  • 1. Concurrent Contribution of Co-contraction to Error Reduction during Dynamic Adaptation of the Wrist.
    Farrens AJ; Schmidt K; Cohen H; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in Resting State Functional Connectivity Associated with Dynamic Adaptation of Wrist Movements.
    Farrens AJ; Vahdat S; Sergi F
    J Neurosci; 2023 May; 43(19):3520-3537. PubMed ID: 36977577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the neural representation of fast and slow states in force field adaptation via fMRI.
    Farrens AJ; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1007-1012. PubMed ID: 31374761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Modulations in Sensorimotor Postmovement and Foreperiod β-Band Activities Related to Error Salience Processing and Sensorimotor Adaptation.
    Torrecillos F; Alayrangues J; Kilavik BE; Malfait N
    J Neurosci; 2015 Sep; 35(37):12753-65. PubMed ID: 26377464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limb dominance results from asymmetries in predictive and impedance control mechanisms.
    Yadav V; Sainburg RL
    PLoS One; 2014; 9(4):e93892. PubMed ID: 24695543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing forearm muscle activity in university-aged males during dynamic radial-ulnar deviation of the wrist using a wrist robot.
    Forman DA; Forman GN; Avila-Mireles EJ; Mugnosso M; Zenzeri J; Murphy B; Holmes MWR
    J Biomech; 2020 Jul; 108():109897. PubMed ID: 32636008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test--retest effect evidenced with functional magnetic resonance imaging.
    Loubinoux I; Carel C; Alary F; Boulanouar K; Viallard G; Manelfe C; Rascol O; Celsis P; Chollet F
    J Cereb Blood Flow Metab; 2001 May; 21(5):592-607. PubMed ID: 11333370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.
    Pizzamiglio S; Desowska A; Shojaii P; Taga M; Turner DL
    NeuroRehabilitation; 2017; 41(1):17-29. PubMed ID: 28527223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation.
    Pizzamiglio S; De Lillo M; Naeem U; Abdalla H; Turner DL
    Front Physiol; 2016; 7():668. PubMed ID: 28119620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the best strategy to command variable stiffness using electromyographic signals.
    Borzelli D; Burdet E; Pastorelli S; d'Avella A; Gastaldi L
    J Neural Eng; 2020 Feb; 17(1):016058. PubMed ID: 31958778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myoelectric analysis of upper-extremity muscles during robot-assisted bilateral wrist flexion-extension in subjects with poststroke hemiplegia.
    Chan HL; Hung JW; Chang KC; Wu CY
    Clin Biomech (Bristol, Avon); 2021 Jul; 87():105412. PubMed ID: 34167043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training.
    Hu XL; Tong KY; Song R; Zheng XJ; Lui KH; Leung WW; Ng S; Au-Yeung SS
    J Electromyogr Kinesiol; 2009 Aug; 19(4):639-50. PubMed ID: 18490177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing forearm muscle activity in young adults during dynamic wrist flexion-extension movement using a wrist robot.
    Forman DA; Forman GN; Avila-Mireles EJ; Mugnosso M; Zenzeri J; Murphy B; Holmes MWR
    J Biomech; 2020 Jul; 108():109908. PubMed ID: 32636014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing muscle co-contraction speeds up internal model acquisition during dynamic motor learning.
    Heald JB; Franklin DW; Wolpert DM
    Sci Rep; 2018 Nov; 8(1):16355. PubMed ID: 30397273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning a locomotor task: with or without errors?
    Marchal-Crespo L; Schneider J; Jaeger L; Riener R
    J Neuroeng Rehabil; 2014 Mar; 11():25. PubMed ID: 24594267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of kinematic redundancy in adaptation of reaching.
    Yang JF; Scholz JP; Latash ML
    Exp Brain Res; 2007 Jan; 176(1):54-69. PubMed ID: 16874517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlimb differences in coordination of rapid wrist/forearm movements.
    Srinivasan GA; Embar T; Sainburg R
    Exp Brain Res; 2020 Mar; 238(3):713-725. PubMed ID: 32060564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm muscle activation for static forces in three-dimensional space.
    Flanders M; Soechting JF
    J Neurophysiol; 1990 Dec; 64(6):1818-37. PubMed ID: 2074466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.