These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37022981)

  • 1. Universal Renaissance Strategy of Metal Fluoride in Secondary Ion Batteries Enabled by Liquid Metal Gallium.
    Yang J; Zhou W; Hu J; Jiang R; Sun G; Zhao J; Wang F; Fang F; Song Y; Sun D
    Adv Mater; 2023 Jul; 35(28):e2301442. PubMed ID: 37022981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries.
    Ma R; Lu Z; Wang C; Wang HE; Yang S; Xi L; Chung JC
    Nanoscale; 2013 Jul; 5(14):6338-43. PubMed ID: 23760208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal- Aspergillus niger Bioleaching Strategy.
    Li J; Wang L; Li L; Lv C; Zatovsky IV; Han W
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8072-8080. PubMed ID: 30722661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination.
    Cheng Y; Yang X; Li M; Li X; Lu X; Wu D; Han B; Zhang Q; Zhu Y; Gu M
    Nano Lett; 2022 Jun; 22(11):4347-4353. PubMed ID: 35584238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fading Mechanisms and Voltage Hysteresis in FeF
    Huang Q; Pollard TP; Ren X; Kim D; Magasinski A; Borodin O; Yushin G
    Small; 2019 Feb; 15(6):e1804670. PubMed ID: 30645034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-Temperature All-Liquid-Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting.
    Ding Y; Guo X; Qian Y; Xue L; Dolocan A; Yu G
    Adv Mater; 2020 Jul; 32(30):e2002577. PubMed ID: 32548922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-Temperature Anode-Less All-Solid-State Batteries via the Conversion Reaction of Metal Fluorides.
    Lee J; Choi SH; Im G; Lee KJ; Lee T; Oh J; Lee N; Kim H; Kim Y; Lee S; Choi JW
    Adv Mater; 2022 Oct; 34(40):e2203580. PubMed ID: 35953451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries.
    Amin K; Mao L; Wei Z
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery.
    Wu F; Srot V; Chen S; Lorger S; van Aken PA; Maier J; Yu Y
    Adv Mater; 2019 Oct; 31(43):e1905146. PubMed ID: 31513323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal-assisted fabrication of iron fluoride-graphene composite paper cathodes for high-energy lithium-ion batteries.
    Zhao X; Hayner CM; Kung MC; Kung HH
    Chem Commun (Camb); 2012 Oct; 48(79):9909-11. PubMed ID: 22935914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes.
    Sun Y; Lee HW; Zheng G; Seh ZW; Sun J; Li Y; Cui Y
    Nano Lett; 2016 Feb; 16(2):1497-501. PubMed ID: 26784146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.
    Jia X; Chen Z; Cui X; Peng Y; Wang X; Wang G; Wei F; Lu Y
    ACS Nano; 2012 Nov; 6(11):9911-9. PubMed ID: 23046380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting metal fluorides as lithium-ion battery cathodes.
    Hua X; Eggeman AS; Castillo-Martínez E; Robert R; Geddes HS; Lu Z; Pickard CJ; Meng W; Wiaderek KM; Pereira N; Amatucci GG; Midgley PA; Chapman KW; Steiner U; Goodwin AL; Grey CP
    Nat Mater; 2021 Jun; 20(6):841-850. PubMed ID: 33479526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A liquid metal-based self-adaptive sulfur-gallium composite for long-cycling lithium-sulfur batteries.
    Zhu M; Li S; Li B; Yang S
    Nanoscale; 2019 Jan; 11(2):412-417. PubMed ID: 30543252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New nanostructured Li2S/silicon rechargeable battery with high specific energy.
    Yang Y; McDowell MT; Jackson A; Cha JJ; Hong SS; Cui Y
    Nano Lett; 2010 Apr; 10(4):1486-91. PubMed ID: 20184382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gallium Nitride Nanoparticles Embedded in a Carbon Nanofiber Anode for Ultralong-Cycle-Life Lithium-Ion Batteries.
    Jung JW; Kim C; Cheong JY; Kim ID
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44263-44269. PubMed ID: 31690073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hetero-Element-Doped Molybdenum Oxide Materials for Energy Storage Systems.
    Hu B; Jian S; Yin G; Feng W; Cao Y; Bai J; Lai Y; Tan H; Dong Y
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gallium-Indium-Tin Eutectic as a Self-Healing Room-Temperature Liquid Metal Anode for High-Capacity Lithium-Ion Batteries.
    Kidanu WG; Hur J; Kim IT
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.