These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37022981)

  • 41. Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries.
    Shen X; Qian T; Chen P; Liu J; Wang M; Yan C
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30058-30064. PubMed ID: 30136847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In Situ Recombination of Elements in Spent Lithium-Ion Batteries to Recover High-Value γ-LiAlO
    Huang Z; Qiu R; Lin K; Ruan J; Xu Z
    Environ Sci Technol; 2021 Jun; 55(11):7643-7653. PubMed ID: 33983726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.
    Doeff MM; Chen G; Cabana J; Richardson TJ; Mehta A; Shirpour M; Duncan H; Kim C; Kam KC; Conry T
    J Vis Exp; 2013 Nov; (81):e50594. PubMed ID: 24300777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Versatile Protein and Its Subunit Biomolecules for Advanced Rechargeable Batteries.
    Wu Y; Li H; Liu T; Xu M
    Adv Mater; 2023 Nov; 35(48):e2305063. PubMed ID: 37474115
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon-Free Cathodes: A Step Forward in the Development of Stable Lithium-Oxygen Batteries.
    Landa-Medrano I; Pinedo R; Ortiz-Vitoriano N; de Larramendi IR; Rojo T
    ChemSusChem; 2015 Dec; 8(23):3932-40. PubMed ID: 26493650
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Situ Construction of Composite Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries.
    Wang Y; Ren L; Liu J; Lu X; Wang Q; Zhou M; Liu W; Sun X
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):50982-50991. PubMed ID: 36322052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Room temperature liquid metals for flexible alkali metal-chalcogen batteries.
    Ren L; Zhang BW
    Exploration (Beijing); 2022 Oct; 2(5):20210182. PubMed ID: 37325500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal/LiF/Li
    Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y
    Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanomaterials for lithium-ion rechargeable batteries.
    Liu HK; Wang GX; Guo Z; Wang J; Konstantinov K
    J Nanosci Nanotechnol; 2006 Jan; 6(1):1-15. PubMed ID: 16573064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An in Situ-Formed Mosaic Li
    Hu B; Yu W; Xu B; Zhang X; Liu T; Shen Y; Lin YH; Nan CW; Li L
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34939-34947. PubMed ID: 31465194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capillary electrophoresis with contactless conductivity detection for the quantification of fluoride in lithium ion battery electrolytes and in ionic liquids-A comparison to the results gained with a fluoride ion-selective electrode.
    Pyschik M; Klein-Hitpaß M; Girod S; Winter M; Nowak S
    Electrophoresis; 2017 Feb; 38(3-4):533-539. PubMed ID: 27770453
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Materials for rechargeable lithium-ion batteries.
    Hayner CM; Zhao X; Kung HH
    Annu Rev Chem Biomol Eng; 2012; 3():445-71. PubMed ID: 22524506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimized Interfaces in Anti-Perovskite Electrolyte-Based Solid-State Lithium Metal Batteries for Enhanced Performance.
    Yu P; Ye Y; Zhu J; Xia W; Zhao Y
    Front Chem; 2021; 9():786956. PubMed ID: 35004611
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.
    Yang C; Fu K; Zhang Y; Hitz E; Hu L
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms.
    Wahid M; Puthusseri D; Gawli Y; Sharma N; Ogale S
    ChemSusChem; 2018 Feb; 11(3):506-526. PubMed ID: 29098791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries.
    Wang T; Li Y; Zhang J; Yan K; Jaumaux P; Yang J; Wang C; Shanmukaraj D; Sun B; Armand M; Cui Y; Wang G
    Nat Commun; 2020 Oct; 11(1):5429. PubMed ID: 33110084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual-Conductive Paths for Solid-State Li Metal Batteries.
    Yang Z; Li M; Lu G; Wang Y; Wei J; Hu X; Li Z; Li P; Xu C
    Small; 2022 Aug; 18(31):e2202911. PubMed ID: 35810467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries.
    Cosandey F; Al-Sharab JF; Badway F; Amatucci GG; Stadelmann P
    Microsc Microanal; 2007 Apr; 13(2):87-95. PubMed ID: 17367548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.