BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37023517)

  • 1. Electric split-ring metamaterial based microfluidic chip with multi-resonances for microparticle trapping and chemical sensing applications.
    Xu X; Zheng D; Lin YS
    J Colloid Interface Sci; 2023 Jul; 642():462-469. PubMed ID: 37023517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz Metamaterial with Multiple Resonances for Biosensing Application.
    Ou H; Lu F; Xu Z; Lin YS
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32485805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application.
    Lai WH; Li B; Fu SH; Lin YS
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dual-Band High-Sensitivity THz Metamaterial Sensor Based on Split Metal Stacking Ring.
    Lu X; Ge H; Jiang Y; Zhang Y
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel.
    Lan F; Luo F; Mazumder P; Yang Z; Meng L; Bao Z; Zhou J; Zhang Y; Liang S; Shi Z; Khan AR; Zhang Z; Wang L; Yin J; Zeng H
    Biomed Opt Express; 2019 Aug; 10(8):3789-3799. PubMed ID: 31452975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
    Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D
    Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity Enhancement and Probiotic Detection of Microfluidic Chips Based on Terahertz Radiation Combined with Metamaterial Technology.
    Lin YS; Huang ST; Hsu SS; Tang KY; Yen TJ; Yao DJ
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar metamaterial sensor with graphene elliptical rings in transmission mode.
    Farrokhfar M; Jarchi S; Keshtkar A
    Appl Opt; 2021 Mar; 60(8):2434-2440. PubMed ID: 33690343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials.
    Yang S; Tang C; Liu Z; Wang B; Wang C; Li J; Wang L; Gu C
    Opt Express; 2017 Jul; 25(14):15938-15946. PubMed ID: 28789104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Channel Capacitive Sensor Arrays.
    Wang B; Long J; Teo KH
    Sensors (Basel); 2016 Jan; 16(2):150. PubMed ID: 26821023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A five-band absorber based on graphene metamaterial for terahertz ultrasensing.
    Jiang W; Chen T
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35016165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials.
    Li S; Nugraha PS; Su X; Chen X; Yang Q; Unferdorben M; Kovács F; Kunsági-Máté S; Liu M; Zhang X; Ouyang C; Li Y; Fülöp JA; Han J; Zhang W
    Opt Express; 2019 Feb; 27(3):2317-2326. PubMed ID: 30732270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz microfluidic sensing using a parallel-plate waveguide sensor.
    Astley V; Reichel K; Mendis R; Mittleman DM
    J Vis Exp; 2012 Aug; (66):e4304. PubMed ID: 22951593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microelectromechanically tunable multiband metamaterial with preserved isotropy.
    Pitchappa P; Ho CP; Qian Y; Dhakar L; Singh N; Lee C
    Sci Rep; 2015 Jun; 5():11678. PubMed ID: 26115416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring performance of THz metamaterial biosensor based on flexible thin-film.
    Wang Z; Geng Z; Fang W
    Opt Express; 2020 Aug; 28(18):26370-26384. PubMed ID: 32906910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms and applications of terahertz metamaterial sensing: a review.
    Xu W; Xie L; Ying Y
    Nanoscale; 2017 Sep; 9(37):13864-13878. PubMed ID: 28895970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Tunable Terahertz Metamaterial Sensor with Single- and Dual-Resonance Characteristic.
    Yang J; Lin YS
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Method for Carbendazim High-Sensitivity Detection Based on the Combination of Metamaterial Sensor and Machine Learning.
    Yang R; Li Y; Zheng J; Qiu J; Song J; Xu F; Qin B
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.