These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37023540)

  • 1. Multi-domain feature analysis method of MI-EEG signal based on Sparse Regularity Tensor-Train decomposition.
    Gao Y; Zhang C; Fang F; Cammon J; Zhang Y
    Comput Biol Med; 2023 May; 158():106887. PubMed ID: 37023540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG multi-domain feature transfer based on sparse regularized Tucker decomposition.
    Gao Y; Zhang C; Huang J; Meng M
    Cogn Neurodyn; 2024 Feb; 18(1):185-197. PubMed ID: 38406207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis.
    Fu R; Han M; Tian Y; Shi P
    J Neurosci Methods; 2020 Sep; 343():108833. PubMed ID: 32619588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensor Discriminant Analysis for MI-EEG Signal Classification Using Convolutional Neural Network.
    Huang S; Peng H; Chen Y; Sun K; Shen F; Wang T; Ma T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5971-5974. PubMed ID: 31947207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Selection Using Extreme Gradient Boosting Bayesian Optimization to upgrade the Classification Performance of Motor Imagery signals for BCI.
    Thenmozhi T; Helen R
    J Neurosci Methods; 2022 Jan; 366():109425. PubMed ID: 34838951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
    Malan NS; Sharma S
    Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification.
    Miao Y; Jin J; Daly I; Zuo C; Wang X; Cichocki A; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():699-707. PubMed ID: 33819158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Tensor-Based Frequency Features Combination Method for Brain-Computer Interfaces.
    Pei Y; Luo Z; Zhao H; Xu D; Li W; Yan Y; Yan H; Xie L; Xu M; Yin E
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():465-475. PubMed ID: 34735347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for classification of multi-class motor imagery tasks based on feature fusion.
    Hou Y; Chen T; Lun X; Wang F
    Neurosci Res; 2022 Mar; 176():40-48. PubMed ID: 34508756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 May; 320():98-106. PubMed ID: 30946880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiwavelet-based sparse time-varying autoregressive modeling for motor imagery EEG classification.
    Liu Z; Wang L; Xu S; Lu K
    Comput Biol Med; 2023 Mar; 155():106196. PubMed ID: 36842221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bispectrum-Based Channel Selection for Motor Imagery Based Brain-Computer Interfacing.
    Jin J; Liu C; Daly I; Miao Y; Li S; Wang X; Cichocki A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2153-2163. PubMed ID: 32870796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor Imagery EEG Classification Based on Riemannian Sparse Optimization and Dempster-Shafer Fusion of Multi-Time-Frequency Patterns.
    Jin J; Qu T; Xu R; Wang X; Cichocki A
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():58-67. PubMed ID: 36288214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG emotion recognition based on data-driven signal auto-segmentation and feature fusion.
    Gao Y; Zhu Z; Fang F; Zhang Y; Meng M
    J Affect Disord; 2024 Sep; 361():356-366. PubMed ID: 38885847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.