BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37023694)

  • 1.
    Hadadi A; Ghanavati S
    Appl Radiat Isot; 2023 Jul; 197():110786. PubMed ID: 37023694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and characterization of flattening filter for high dose rate
    Ghobadi P; Farhood B; Ghorbani M; Mohseni M
    Comput Biol Med; 2020 Aug; 123():103878. PubMed ID: 32658791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of
    Safigholi H; Meigooni AS; Song WY
    Med Phys; 2017 Sep; 44(9):4426-4436. PubMed ID: 28494095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of a HDR skin applicator with flattening filter.
    Granero D; Pérez-Calatayud J; Gimeno J; Ballester F; Casal E; Crispín V; van der Laarse R
    Med Phys; 2008 Feb; 35(2):495-503. PubMed ID: 18383670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of bone dose arising from skin cancer brachytherapy: A comparison between
    Sheikholeslami S; Khodaverdian S; Hashemzaei F; Ghobadi P; Ghorbani M; Farhood B
    Comput Methods Programs Biomed; 2021 Jun; 205():106089. PubMed ID: 33862569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric assessment of an air-filled balloon applicator in HDR vaginal cuff brachytherapy using the Monte Carlo method.
    Jiang H; Badkul R; Pokhrel D
    J Appl Clin Med Phys; 2018 May; 19(3):101-107. PubMed ID: 29493101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bebig Valencia-type skin applicators: Dosimetric study and implementation of a dosimetric hybrid technique.
    Anagnostopoulos G; Andrássy M; Baltas D
    Brachytherapy; 2017; 16(5):1044-1056. PubMed ID: 28624329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and dosimetric assessment of a patient-specific elastic skin applicator for high-dose-rate brachytherapy.
    Park SY; Kang S; Park JM; An HJ; Oh DH; Kim JI
    Brachytherapy; 2019; 18(2):224-232. PubMed ID: 30528742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions.
    Fonseca GP; Landry G; White S; D'Amours M; Yoriyaz H; Beaulieu L; Reniers B; Verhaegen F
    Phys Med Biol; 2014 Oct; 59(19):5921-35. PubMed ID: 25210788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators.
    Moradi F; Ung NM; Khandaker MU; Mahdiraji GA; Saad M; Abdul Malik R; Bustam AZ; Zaili Z; Bradley DA
    Phys Med Biol; 2017 Jul; 62(16):6550-6566. PubMed ID: 28708603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions.
    Rivard MJ; Melhus CS; Granero D; Perez-Calatayud J; Ballester F
    Med Phys; 2009 Jun; 36(6):1968-75. PubMed ID: 19610285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric characterization of round HDR 192Ir accuboost applicators for breast brachytherapy.
    Rivard MJ; Melhus CS; Wazer DE; Bricault RJ
    Med Phys; 2009 Nov; 36(11):5027-32. PubMed ID: 19994513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate
    Ma Y; Vijande J; Ballester F; Tedgren ÅC; Granero D; Haworth A; Mourtada F; Fonseca GP; Zourari K; Papagiannis P; Rivard MJ; Siebert FA; Sloboda RS; Smith R; Chamberland MJP; Thomson RM; Verhaegen F; Beaulieu L
    Med Phys; 2017 Nov; 44(11):5961-5976. PubMed ID: 28722180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.
    Kim HN; Lee JH; Park HB; Kim HJ; Cho SO
    Med Phys; 2018 Jan; 45(1):29-36. PubMed ID: 29106708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direction modulated brachytherapy (DMBT) for treatment of cervical cancer: A planning study with
    Safigholi H; Han DY; Mashouf S; Soliman A; Meigooni AS; Owrangi A; Song WY
    Med Phys; 2017 Dec; 44(12):6538-6547. PubMed ID: 28940520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator.
    Petrokokkinos L; Zourari K; Pantelis E; Moutsatsos A; Karaiskos P; Sakelliou L; Seimenis I; Georgiou E; Papagiannis P
    Med Phys; 2011 Apr; 38(4):1981-92. PubMed ID: 21626931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing.
    Yang Y; Rivard MJ
    Med Phys; 2010 Nov; 37(11):5665-71. PubMed ID: 21158278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions.
    Candela-Juan C; Niatsetski Y; van der Laarse R; Granero D; Ballester F; Perez-Calatayud J; Vijande J
    Med Phys; 2016 Apr; 43(4):1639. PubMed ID: 27036563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.
    Redler G; Templeton A; Zhen H; Turian J; Bernard D; Chu JCH; Griem KL; Liao Y
    Brachytherapy; 2018; 17(2):500-505. PubMed ID: 29229377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of vaginal cylinder inhomogeneity on the HDR brachytherapy dose calculations using Monte Carlo simulations.
    Meftahi M; Song WY
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14228. PubMed ID: 38043126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.