These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37023812)

  • 1. Deep denitrification: Stream and groundwater biogeochemistry reveal contrasted but connected worlds above and below.
    Severe E; Errigo IM; Proteau M; Sayedi SS; Kolbe T; Marçais J; Thomas Z; Petton C; Rouault F; Vautier C; de Dreuzy JR; Moatar F; Aquilina L; Wood RL; LaBasque T; Lécuyer C; Pinay G; Abbott BW
    Sci Total Environ; 2023 Jul; 880():163178. PubMed ID: 37023812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen dynamics at the groundwater-surface water interface of a degraded urban stream.
    Mayer PM; Groffman PM; Striz EA; Kaushal SS
    J Environ Qual; 2010; 39(3):810-23. PubMed ID: 20400577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.
    Hall SJ; Weintraub SR; Eiriksson D; Brooks PD; Baker MA; Bowen GJ; Bowling DR
    Environ Sci Technol; 2016 Feb; 50(3):1137-46. PubMed ID: 26744921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stream restoration on denitrification in an urbanizing watershed.
    Kaushal SS; Groffman PM; Mayer PM; Striz E; Gold AJ
    Ecol Appl; 2008 Apr; 18(3):789-804. PubMed ID: 18488635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems - A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France).
    Deirmendjian L; Anschutz P; Morel C; Mollier A; Augusto L; Loustau D; Cotovicz LC; Buquet D; Lajaunie K; Chaillou G; Voltz B; Charbonnier C; Poirier D; Abril G
    Sci Total Environ; 2019 Apr; 661():613-629. PubMed ID: 30682612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting subsurface denitrification characteristics under temperate pasture lands and its implications for nutrient management in agricultural catchments.
    Rivas A; Singh R; Horne DJ; Roygard J; Matthews A; Hedley MJ
    J Environ Manage; 2020 Oct; 272():111067. PubMed ID: 32736232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems.
    Romanelli A; Soto DX; Matiatos I; Martínez DE; Esquius S
    Sci Total Environ; 2020 May; 715():136909. PubMed ID: 32018104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources.
    Hu M; Liu Y; Zhang Y; Dahlgren RA; Chen D
    Water Res; 2019 Mar; 150():418-430. PubMed ID: 30557828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stratification of reactivity determines nitrate removal in groundwater.
    Kolbe T; de Dreuzy JR; Abbott BW; Aquilina L; Babey T; Green CT; Fleckenstein JH; Labasque T; Laverman AM; Marçais J; Peiffer S; Thomas Z; Pinay G
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2494-2499. PubMed ID: 30692250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying background nitrate removal mechanisms in an agricultural watershed with contrasting subcatchment baseflow concentrations.
    Zell WO; Culver TB; Sanford WE; Goodall JL
    J Environ Qual; 2020 Mar; 49(2):392-403. PubMed ID: 33016417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hillslope-scale aquifer-model to determine past agricultural legacy and future nitrate concentrations in rivers.
    Guillaumot L; Marçais J; Vautier C; Guillou A; Vergnaud V; Bouchez C; Dupas R; Durand P; de Dreuzy JR; Aquilina L
    Sci Total Environ; 2021 Dec; 800():149216. PubMed ID: 34392215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Land-use controls on nutrient loads in aquifers draining agricultural and mixed-use karstic watersheds.
    Tagne GV; Dowling C
    Environ Monit Assess; 2020 Feb; 192(3):168. PubMed ID: 32034511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of redox gradients on nitrate transport from the landscape to groundwater and streams.
    Tesoriero AJ; Stratton LE; Miller MP
    Sci Total Environ; 2021 Dec; 800():150200. PubMed ID: 34625279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denitrification across landscapes and waterscapes: a synthesis.
    Seitzinger S; Harrison JA; Böhlke JK; Bouwman AF; Lowrance R; Peterson B; Tobias C; Van Drecht G
    Ecol Appl; 2006 Dec; 16(6):2064-90. PubMed ID: 17205890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal variations in the geochemistry of shallow groundwater contaminated with nitrate at a residential site.
    Atekwana EA; Geyer CJ
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27155-27172. PubMed ID: 30022393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sources and dispersal of nitrate in multiple waters, constrained by multiple isotopes, in the Wudalianchi region, northeast China.
    Zhang H; Yang Y; Zou J; Wen Y; Gao C
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):24348-24361. PubMed ID: 29948718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the sources and fate of nitrate in riparian aquifers under agricultural land using in situ-measured noble gases, stable isotopes, and metabolic genes.
    Ju Y; Koh DC; Kim DH; Mayer B; Kwon HI
    Water Res; 2023 Mar; 231():119601. PubMed ID: 36645943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater contamination in coastal urban areas: Anthropogenic pressure and natural attenuation processes. Example of Recife (PE State, NE Brazil).
    Bertrand G; Hirata R; Pauwels H; Cary L; Petelet-Giraud E; Chatton E; Aquilina L; Labasque T; Martins V; Montenegro S; Batista J; Aurouet A; Santos J; Bertolo R; Picot G; Franzen M; Hochreutener R; Braibant G
    J Contam Hydrol; 2016 Sep; 192():165-180. PubMed ID: 27500748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of oxbow lakes in controlling redox geochemistry of shallow groundwater under a heterogeneous fluvial sedimentary environment in an agricultural field: Coexistence of iron and sulfate reduction.
    Choi BY; Yun ST; Kim KH
    J Contam Hydrol; 2016; 185-186():28-41. PubMed ID: 26788873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary.
    Domangue RJ; Mortazavi B
    Environ Pollut; 2018 Jul; 238():599-606. PubMed ID: 29609171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.