BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37023996)

  • 61. Quercetin alleviates Cadmium-induced autophagy inhibition via TFEB-dependent lysosomal restoration in primary proximal tubular cells.
    Zhao Y; Li ZF; Zhang D; Wang ZY; Wang L
    Ecotoxicol Environ Saf; 2021 Jan; 208():111743. PubMed ID: 33396069
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review.
    Wang Q; Ma C; Wang N; Mao H
    Food Funct; 2024 Apr; 15(8):3897-3907. PubMed ID: 38535893
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression.
    Luo CL; Liu YQ; Wang P; Song CH; Wang KJ; Dai LP; Zhang JY; Ye H
    Biomed Pharmacother; 2016 Aug; 82():595-605. PubMed ID: 27470402
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells.
    Hazafa A; Rehman KU; Jahan N; Jabeen Z
    Nutr Cancer; 2020; 72(3):386-397. PubMed ID: 31287738
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2).
    Salucci M; Stivala LA; Maiani G; Bugianesi R; Vannini V
    Br J Cancer; 2002 May; 86(10):1645-51. PubMed ID: 12085217
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chemical and Cellular Assays Combined with In Vitro Digestion to Determine the Antioxidant Activity of Flavonoids from Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Leaves.
    Zhang Y; Chen S; Wei C; Gong H; Li L; Ye X
    PLoS One; 2016; 11(12):e0167484. PubMed ID: 27911932
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Expanding Arsenal against Neurodegenerative Diseases Using Quercetin Based Nanoformulations: Breakthroughs and Bottlenecks.
    Vishwas S; Kumar R; Khursheed R; Ramanunny AK; Kumar R; Awasthi A; Corrie L; Porwal O; Arshad MF; Alshammari MK; Alghitran AA; Qumayri AN; Alkhaldi SM; Alshammari AK; Chellappan DK; Gupta G; Collet T; Adams J; Dua K; Gulati M; Singh SK
    Curr Neuropharmacol; 2023; 21(7):1558-1574. PubMed ID: 35950245
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The antitumor activities of flavonoids.
    Kandaswami C; Lee LT; Lee PP; Hwang JJ; Ke FC; Huang YT; Lee MT
    In Vivo; 2005; 19(5):895-909. PubMed ID: 16097445
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dietary nanoencapsulated quercetin homeostated transcription of redox-status orchestrating genes in zebrafish (Danio rerio) exposed to silver nanoparticles.
    Tayemeh MB; Kalbassi MR; Paknejad H; Joo HS
    Environ Res; 2020 Jun; 185():109477. PubMed ID: 32276170
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interactions between Cisplatin and Quercetin at Physiological and Hyperthermic Conditions on Cancer Cells In Vitro and In Vivo.
    Oršolić N; Odeh D; Jembrek MJ; Knežević J; Kučan D
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32709143
    [TBL] [Abstract][Full Text] [Related]  

  • 71. cRGDfK-Grafted Small-Size Quercetin Micelles For Enhancing Therapy Efficacy Of Active Ingredient From The Chinese Medicinal Herb.
    Xu P; Wang H; Hu H; Ye Y; Dong Y; Li S; Mei D; Guo Z; Wang D; Sun Y; Yu T; Qiao J; Zhang Q
    Int J Nanomedicine; 2019; 14():9173-9184. PubMed ID: 31819425
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice.
    Rogerio AP; Dora CL; Andrade EL; Chaves JS; Silva LF; Lemos-Senna E; Calixto JB
    Pharmacol Res; 2010 Apr; 61(4):288-97. PubMed ID: 19892018
    [TBL] [Abstract][Full Text] [Related]  

  • 73. DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice.
    Oršolić N; Gajski G; Garaj-Vrhovac V; Dikić D; Prskalo ZŠ; Sirovina D
    Eur J Pharmacol; 2011 Apr; 656(1-3):110-8. PubMed ID: 21277296
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin.
    Ferraresi R; Troiano L; Roat E; Lugli E; Nemes E; Nasi M; Pinti M; Fernandez MI; Cooper EL; Cossarizza A
    Free Radic Res; 2005 Nov; 39(11):1249-58. PubMed ID: 16298752
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Anticancer Properties of Kaempferol on Cellular Signaling Pathways.
    Sengupta B; Biswas P; Roy D; Lovett J; Simington L; Fry DR; Travis K
    Curr Top Med Chem; 2022; 22(30):2474-2482. PubMed ID: 36082856
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility.
    Aytac Z; Kusku SI; Durgun E; Uyar T
    Food Chem; 2016 Apr; 197(Pt A):864-71. PubMed ID: 26617028
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment.
    Rahmani AH; Almatroudi A; Allemailem KS; Khan AA; Almatroodi SA
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558146
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism.
    Zhao X; Wang J; Deng Y; Liao L; Zhou M; Peng C; Li Y
    Phytother Res; 2021 Sep; 35(9):4727-4747. PubMed ID: 34159683
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies.
    Joshi H; Gupta DS; Kaur G; Singh T; Ramniwas S; Sak K; Aggarwal D; Chhabra RS; Gupta M; Saini AK; Tuli HS
    Naunyn Schmiedebergs Arch Pharmacol; 2023 Dec; 396(12):3443-3458. PubMed ID: 37490121
    [TBL] [Abstract][Full Text] [Related]  

  • 80. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide.
    Maurya AK; Vinayak M
    PLoS One; 2016; 11(8):e0160686. PubMed ID: 27494022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.