BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37024008)

  • 1. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase.
    Hartenstine MJ; Goodman MF; Petruska J
    J Biol Chem; 2000 Jun; 275(24):18382-90. PubMed ID: 10849445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
    Hou C; Chan NL; Gu L; Li GM
    Nat Struct Mol Biol; 2009 Aug; 16(8):869-75. PubMed ID: 19597480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences.
    Avila Figueroa A; Delaney S
    J Biol Chem; 2010 May; 285(19):14648-57. PubMed ID: 20228068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics studies of trinucleotide repeat DNA involved in neurodegenerative disorders.
    Jithesh PV; Singh P; Joshi R
    J Biomol Struct Dyn; 2001 Dec; 19(3):479-95. PubMed ID: 11790146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational and migrational dynamics of slipped-strand DNA three-way junctions containing trinucleotide repeats.
    Hu T; Morten MJ; Magennis SW
    Nat Commun; 2021 Jan; 12(1):204. PubMed ID: 33420051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular conformations and dynamics of nucleotide repeats associated with neurodegenerative diseases: double helices and CAG hairpin loops.
    Pan F; Zhang Y; Xu P; Man VH; Roland C; Weninger K; Sagui C
    Comput Struct Biotechnol J; 2021; 19():2819-2832. PubMed ID: 34093995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease.
    Petruska J; Hartenstine MJ; Goodman MF
    J Biol Chem; 1998 Feb; 273(9):5204-10. PubMed ID: 9478975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins.
    Mitchell ML; Leveille MP; Solecki RS; Tran T; Cannon B
    J Phys Chem B; 2018 Dec; 122(50):11841-11851. PubMed ID: 30441902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.
    Petruska J; Arnheim N; Goodman MF
    Nucleic Acids Res; 1996 Jun; 24(11):1992-8. PubMed ID: 8668527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):17-23. PubMed ID: 9451435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trinucleotide repeats associated with human disease.
    Mitas M
    Nucleic Acids Res; 1997 Jun; 25(12):2245-54. PubMed ID: 9171073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins.
    Yu A; Dill J; Mitas M
    Nucleic Acids Res; 1995 Oct; 23(20):4055-7. PubMed ID: 7479064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.