These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 37024076)
1. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data. Wang Y; Gao X; Ru X; Sun P; Wang J J Proteomics; 2023 May; 280():104895. PubMed ID: 37024076 [TBL] [Abstract][Full Text] [Related]
2. The Weight-Based Feature Selection (WBFS) Algorithm Classifies Lung Cancer Subtypes Using Proteomic Data. Wang Y; Gao X; Ru X; Sun P; Wang J Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509950 [TBL] [Abstract][Full Text] [Related]
3. TCPA v3.0: An Integrative Platform to Explore the Pan-Cancer Analysis of Functional Proteomic Data. Chen MM; Li J; Wang Y; Akbani R; Lu Y; Mills GB; Liang H Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S15-S25. PubMed ID: 31201206 [TBL] [Abstract][Full Text] [Related]
4. High-throughput proteomics of breast cancer subtypes: Biological characterization and multiple candidate biomarker panels to patients' stratification. Azevedo ALK; Gomig THB; Batista M; Marchini FK; Spautz CC; Rabinovich I; Sebastião APM; Oliveira JC; Gradia DF; Cavalli IJ; Ribeiro EMSF J Proteomics; 2023 Aug; 285():104955. PubMed ID: 37390896 [TBL] [Abstract][Full Text] [Related]
5. Functional Proteomic Profiling Analysis in Four Major Types of Gastrointestinal Cancers. Wang Y; Gao X; Wang J Biomolecules; 2023 Apr; 13(4):. PubMed ID: 37189448 [TBL] [Abstract][Full Text] [Related]
6. Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas. Li J; Akbani R; Zhao W; Lu Y; Weinstein JN; Mills GB; Liang H Cancer Res; 2017 Nov; 77(21):e51-e54. PubMed ID: 29092939 [TBL] [Abstract][Full Text] [Related]
7. Bayesian data integration and variable selection for pan-cancer survival prediction using protein expression data. Maity AK; Bhattacharya A; Mallick BK; Baladandayuthapani V Biometrics; 2020 Mar; 76(1):316-325. PubMed ID: 31393003 [TBL] [Abstract][Full Text] [Related]
8. Identification of protein signatures for lung cancer subtypes based on BPSO method. Wang J; Wang H; Xu J; Song Q; Zhou B; Shangguan J; Xue M; Wang Y PLoS One; 2023; 18(12):e0294243. PubMed ID: 38060494 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery. Ummanni R; Mannsperger HA; Sonntag J; Oswald M; Sharma AK; König R; Korf U Biochim Biophys Acta; 2014 May; 1844(5):950-9. PubMed ID: 24361481 [TBL] [Abstract][Full Text] [Related]
10. Proteomic Features of Colorectal Cancer Identify Tumor Subtypes Independent of Oncogenic Mutations and Independently Predict Relapse-Free Survival. Clarke CN; Lee MS; Wei W; Manyam G; Jiang ZQ; Lu Y; Morris J; Broom B; Menter D; Vilar-Sanchez E; Raghav K; Eng C; Chang GJ; Simon I; Bernards R; Overman M; Mills GB; Maru D; Kopetz S Ann Surg Oncol; 2017 Dec; 24(13):4051-4058. PubMed ID: 28936799 [TBL] [Abstract][Full Text] [Related]
11. Proteomic biomarkers for lung cancer progression. Ren Y; Zhao S; Jiang D; Feng X; Zhang Y; Wei Z; Wang Z; Zhang W; Zhou QF; Li Y; Hou H; Xu Y; Zhou F Biomark Med; 2018 Mar; 12(3):205-215. PubMed ID: 29424557 [TBL] [Abstract][Full Text] [Related]
12. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
13. Identification of genes and pathways involved in kidney renal clear cell carcinoma. Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354 [TBL] [Abstract][Full Text] [Related]
14. Fast approximate inference for variable selection in Dirichlet process mixtures, with an application to pan-cancer proteomics. Crook OM; Gatto L; Kirk PDW Stat Appl Genet Mol Biol; 2019 Dec; 18(6):. PubMed ID: 31829970 [TBL] [Abstract][Full Text] [Related]
15. Machine learning applications in cancer prognosis and prediction. Kourou K; Exarchos TP; Exarchos KP; Karamouzis MV; Fotiadis DI Comput Struct Biotechnol J; 2015; 13():8-17. PubMed ID: 25750696 [TBL] [Abstract][Full Text] [Related]
16. Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers. Sarkar JP; Saha I; Sarkar A; Maulik U Comput Biol Med; 2021 Apr; 131():104244. PubMed ID: 33550016 [TBL] [Abstract][Full Text] [Related]
17. Personalized Integrated Network Modeling of the Cancer Proteome Atlas. Ha MJ; Banerjee S; Akbani R; Liang H; Mills GB; Do KA; Baladandayuthapani V Sci Rep; 2018 Oct; 8(1):14924. PubMed ID: 30297783 [TBL] [Abstract][Full Text] [Related]
18. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics. Phan JH; Quo CF; Wang MD Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692 [TBL] [Abstract][Full Text] [Related]
19. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods. Li L; Ching WK; Liu ZP Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551 [TBL] [Abstract][Full Text] [Related]
20. Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome. Bhattacharyya R; Ha MJ; Liu Q; Akbani R; Liang H; Baladandayuthapani V JCO Clin Cancer Inform; 2020 May; 4():399-411. PubMed ID: 32374631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]