BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37024076)

  • 1. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data.
    Wang Y; Gao X; Ru X; Sun P; Wang J
    J Proteomics; 2023 May; 280():104895. PubMed ID: 37024076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Weight-Based Feature Selection (WBFS) Algorithm Classifies Lung Cancer Subtypes Using Proteomic Data.
    Wang Y; Gao X; Ru X; Sun P; Wang J
    Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TCPA v3.0: An Integrative Platform to Explore the Pan-Cancer Analysis of Functional Proteomic Data.
    Chen MM; Li J; Wang Y; Akbani R; Lu Y; Mills GB; Liang H
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S15-S25. PubMed ID: 31201206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput proteomics of breast cancer subtypes: Biological characterization and multiple candidate biomarker panels to patients' stratification.
    Azevedo ALK; Gomig THB; Batista M; Marchini FK; Spautz CC; Rabinovich I; Sebastião APM; Oliveira JC; Gradia DF; Cavalli IJ; Ribeiro EMSF
    J Proteomics; 2023 Aug; 285():104955. PubMed ID: 37390896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Proteomic Profiling Analysis in Four Major Types of Gastrointestinal Cancers.
    Wang Y; Gao X; Wang J
    Biomolecules; 2023 Apr; 13(4):. PubMed ID: 37189448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas.
    Li J; Akbani R; Zhao W; Lu Y; Weinstein JN; Mills GB; Liang H
    Cancer Res; 2017 Nov; 77(21):e51-e54. PubMed ID: 29092939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian data integration and variable selection for pan-cancer survival prediction using protein expression data.
    Maity AK; Bhattacharya A; Mallick BK; Baladandayuthapani V
    Biometrics; 2020 Mar; 76(1):316-325. PubMed ID: 31393003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of protein signatures for lung cancer subtypes based on BPSO method.
    Wang J; Wang H; Xu J; Song Q; Zhou B; Shangguan J; Xue M; Wang Y
    PLoS One; 2023; 18(12):e0294243. PubMed ID: 38060494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery.
    Ummanni R; Mannsperger HA; Sonntag J; Oswald M; Sharma AK; König R; Korf U
    Biochim Biophys Acta; 2014 May; 1844(5):950-9. PubMed ID: 24361481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic Features of Colorectal Cancer Identify Tumor Subtypes Independent of Oncogenic Mutations and Independently Predict Relapse-Free Survival.
    Clarke CN; Lee MS; Wei W; Manyam G; Jiang ZQ; Lu Y; Morris J; Broom B; Menter D; Vilar-Sanchez E; Raghav K; Eng C; Chang GJ; Simon I; Bernards R; Overman M; Mills GB; Maru D; Kopetz S
    Ann Surg Oncol; 2017 Dec; 24(13):4051-4058. PubMed ID: 28936799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic biomarkers for lung cancer progression.
    Ren Y; Zhao S; Jiang D; Feng X; Zhang Y; Wei Z; Wang Z; Zhang W; Zhou QF; Li Y; Hou H; Xu Y; Zhou F
    Biomark Med; 2018 Mar; 12(3):205-215. PubMed ID: 29424557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes and pathways involved in kidney renal clear cell carcinoma.
    Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M
    BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast approximate inference for variable selection in Dirichlet process mixtures, with an application to pan-cancer proteomics.
    Crook OM; Gatto L; Kirk PDW
    Stat Appl Genet Mol Biol; 2019 Dec; 18(6):. PubMed ID: 31829970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning applications in cancer prognosis and prediction.
    Kourou K; Exarchos TP; Exarchos KP; Karamouzis MV; Fotiadis DI
    Comput Struct Biotechnol J; 2015; 13():8-17. PubMed ID: 25750696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers.
    Sarkar JP; Saha I; Sarkar A; Maulik U
    Comput Biol Med; 2021 Apr; 131():104244. PubMed ID: 33550016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Personalized Integrated Network Modeling of the Cancer Proteome Atlas.
    Ha MJ; Banerjee S; Akbani R; Liang H; Mills GB; Do KA; Baladandayuthapani V
    Sci Rep; 2018 Oct; 8(1):14924. PubMed ID: 30297783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods.
    Li L; Ching WK; Liu ZP
    Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome.
    Bhattacharyya R; Ha MJ; Liu Q; Akbani R; Liang H; Baladandayuthapani V
    JCO Clin Cancer Inform; 2020 May; 4():399-411. PubMed ID: 32374631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.