These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3702442)

  • 1. Correlation between the malate dependent progesterone and citrate biosynthesis in the mitochondrial fraction of human term placenta. The stimulatory effect of ADP and ATP.
    Swierczynski J; Klimek J; Zelewski L
    J Steroid Biochem; 1986 Feb; 24(2):591-5. PubMed ID: 3702442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulatory effect of ADP, ATP, NAD(P) on pyruvate production from malate by uncoupled human placental mitochondria.
    Swierczyński J; Aleksandrowicz Z; Zelewski L
    Biochem Med Metab Biol; 1987 Oct; 38(2):156-64. PubMed ID: 3675918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between energy generation and cholesterol side-chain cleavage reaction in the mitochondria from human term placenta.
    Klimek J; Bogusławski W; Zelewski L
    Biochim Biophys Acta; 1979 Oct; 587(3):362-72. PubMed ID: 549647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of malic enzyme in the malate dependent biosynthesis of progesterone in the mitochondrial fraction of human term placenta.
    Swierczyński J; Klimek J; Zelewski L
    J Steroid Biochem; 1985 Mar; 22(3):415-8. PubMed ID: 3990291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of progesterone biosynthesis in human placental mitochondria by Krebs cycle metabolites.
    Klimek J; Boguslawski W; Tialowska B; Zelewski L
    Acta Biochim Pol; 1976; 23(2-3):185-92. PubMed ID: 970033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progesterone biosynthesis supported by fatty acid oxidation in the mitochondrial fraction of human term placenta.
    Tiałowska B; Klimek J; Zelewski L
    Acta Biochim Pol; 1983; 30(1):11-21. PubMed ID: 6868904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.
    Martin BR; Denton RM
    Biochem J; 1971 Nov; 125(1):105-13. PubMed ID: 5158897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by hydroxymalonate of malate dependent biosynthesis of progesterone in the mitochondrial fraction of human term placenta.
    Klimek J; Swierczyński J; Zelewski L
    J Steroid Biochem; 1987 Jan; 26(1):161-3. PubMed ID: 3821103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of adenosine triphosphate on the tricarboxylate transporting system of rat liver mitochondria.
    Robinson BH; Cheema-Dhadli S; Halperin ML
    J Biol Chem; 1975 May; 250(10):3639-43. PubMed ID: 1126931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Mn2+ of citrate supported progesterone biosynthesis in mitochondrial fractions of human term placentae.
    Boguslawski W; Klimek J; Tialowska B; Zelewski L
    J Steroid Biochem; 1976 Jan; 7(1):39-44. PubMed ID: 5631
    [No Abstract]   [Full Text] [Related]  

  • 11. Control of pyruvate dehydrogenase activity in intact cardiac mitochondria. Regulation of the inactivation and activation of the dehydrogenase.
    Chiang PK; Sacktor B
    J Biol Chem; 1975 May; 250(9):3399-408. PubMed ID: 123530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria from human term placenta. III. The role of respiration and energy generation in progesterone biosynthesis.
    Meigs RA; Sheean LA
    Biochim Biophys Acta; 1977 Nov; 489(2):225-35. PubMed ID: 922026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory control induced by ATP in human term placental mitochondria.
    Martínez F; Espinosa-García T; Flores-Herrera O; Pardo JP
    Placenta; 1993; 14(3):321-31. PubMed ID: 8367413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    Biochem J; 1975 Dec; 152(3):637-45. PubMed ID: 1227506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts by adenine nucleotides.
    Evans CT; Scragg AH; Ratledge C
    Eur J Biochem; 1983 May; 132(3):609-15. PubMed ID: 6682758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1975 Mar; 146(3):527-35. PubMed ID: 1147907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of 2,4-dinitrophenol-induced potassium efflux by adenine nucleotides in mitochondria.
    Baranova OV; Skarga YY; Negoda AE; Mironova GD
    Biochemistry (Mosc); 2000 Feb; 65(2):218-22. PubMed ID: 10713551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the electrogenic nature of the ATP-ADP exchange system in rat liver mitochondria.
    Laris PC
    Biochim Biophys Acta; 1977 Jan; 459(1):110-8. PubMed ID: 831780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.
    Bulos BA; Thomas BJ; Shukla SP; Sacktor B
    Arch Biochem Biophys; 1984 Nov; 234(2):382-93. PubMed ID: 6497378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium modulates the ATP and ADP hydrolysis in human placental mitochondria.
    Martínez F; Uribe A; Espinosa-García MT; Flores-Herrera O; García-Pérez C; Milán R
    Int J Biochem Cell Biol; 2002 Aug; 34(8):992-1003. PubMed ID: 12007637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.