BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37024718)

  • 1. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks.
    Zhou Z; LaPointe AM; Shaffer TD; Coates GW
    Nat Chem; 2023 Jun; 15(6):856-861. PubMed ID: 37024718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atactic, Isotactic, and Syndiotactic Methylated Polyhydroxybutyrates: An Unexpected Series of Isomorphic Polymers.
    Zhou Z; LaPointe AM; Coates GW
    J Am Chem Soc; 2023 Dec; 145(48):25983-25988. PubMed ID: 37976254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tacticity Characterization of Biosynthesized Polyhydroxyalkanoates Containing (
    Mierzati M; Miyahara Y; Curial B; Nomura CT; Taguchi S; Abe H; Tsuge T
    Biomacromolecules; 2024 Jan; 25(1):444-454. PubMed ID: 38135668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.
    Kumar A; Srivastava JK; Mallick N; Singh AK
    Recent Pat Biotechnol; 2015; 9(1):4-21. PubMed ID: 26073514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates.
    Zhou L; Zhang Z; Shi C; Scoti M; Barange DK; Gowda RR; Chen EY
    Science; 2023 Apr; 380(6640):64-69. PubMed ID: 37023198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile aliphatic polyester biosynthesis system for producing random and block copolymers composed of 2-, 3-, 4-, 5-, and 6-hydroxyalkanoates using the sequence-regulating polyhydroxyalkanoate synthase PhaC
    Satoh K; Kawakami T; Isobe N; Pasquier L; Tomita H; Zinn M; Matsumoto K
    Microb Cell Fact; 2022 May; 21(1):84. PubMed ID: 35568875
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Turco R; Santagata G; Corrado I; Pezzella C; Di Serio M
    Front Bioeng Biotechnol; 2020; 8():619266. PubMed ID: 33585417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable Polyhydroxyalkanoates by Stereoselective Copolymerization of Racemic Diolides: Stereocontrol and Polyolefin-Like Properties.
    Tang X; Westlie AH; Caporaso L; Cavallo L; Falivene L; Chen EY
    Angew Chem Int Ed Engl; 2020 May; 59(20):7881-7890. PubMed ID: 31991036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution.
    Acharjee SA; Bharali P; Gogoi B; Sorhie V; Walling B; Alemtoshi
    Water Air Soil Pollut; 2023; 234(1):21. PubMed ID: 36593989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can biotechnology turn the tide on plastics?
    Brandon AM; Criddle CS
    Curr Opin Biotechnol; 2019 Jun; 57():160-166. PubMed ID: 31075553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs).
    Levine AC; Heberlig GW; Nomura CT
    Int J Biol Macromol; 2016 Feb; 83():358-65. PubMed ID: 26616449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternating Isotactic Polyhydroxyalkanoates via Site- and Stereoselective Polymerization of Unsymmetrical Diolides.
    Zhang Z; Shi C; Scoti M; Tang X; Chen EY
    J Am Chem Soc; 2022 Nov; 144(43):20016-20024. PubMed ID: 36256876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources.
    Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ
    Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial polyhydroxyalkanoates.
    Lee SY
    Biotechnol Bioeng; 1996 Jan; 49(1):1-14. PubMed ID: 18623547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
    Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S
    Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters.
    Brandl H; Gross RA; Lenz RW; Fuller RC
    Adv Biochem Eng Biotechnol; 1990; 41():77-93. PubMed ID: 2126418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.