These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 37024922)

  • 1. Explainable prediction of daily hospitalizations for cerebrovascular disease using stacked ensemble learning.
    Lu X; Qiu H
    BMC Med Inform Decis Mak; 2023 Apr; 23(1):59. PubMed ID: 37024922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the incidence of infectious diarrhea with symptom surveillance data using a stacking-based ensembled model.
    Wang P; Zhang W; Wang H; Shi C; Li Z; Wang D; Luo L; Du Z; Hao Y
    BMC Infect Dis; 2024 Feb; 24(1):265. PubMed ID: 38408967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal prediction of daily PM
    Wu Y; Lin S; Shi K; Ye Z; Fang Y
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach.
    Ye GH; Alim M; Guan P; Huang DS; Zhou BS; Wu W
    PLoS One; 2021; 16(3):e0248597. PubMed ID: 33725011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China.
    Li X; Zhang X
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117485-117502. PubMed ID: 37867169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods.
    Dostmohammadi M; Pedram MZ; Hoseinzadeh S; Garcia DA
    J Environ Manage; 2024 Jul; 364():121264. PubMed ID: 38870783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting machine's performance record using the stacked long short-term memory (LSTM) neural networks.
    Ma M; Liu C; Wei R; Liang B; Dai J
    J Appl Clin Med Phys; 2022 Mar; 23(3):e13558. PubMed ID: 35170838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure.
    Qiu H; Luo L; Su Z; Zhou L; Wang L; Chen Y
    BMC Med Inform Decis Mak; 2020 May; 20(1):83. PubMed ID: 32357880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on prediction of daily admissions of respiratory diseases with comorbid diabetes in Beijing based on long short-term memory recurrent neural network.
    Zhu Q; Zhang M; Hu Y; Xu X; Tao L; Zhang J; Luo Y; Guo X; Liu X
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2022 Feb; 51(1):1-9. PubMed ID: 35576109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hourly PM
    Shen J; Liu Q; Feng X
    J Environ Manage; 2024 Nov; 370():122703. PubMed ID: 39357440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble streamflow forecasting based on variational mode decomposition and long short term memory.
    Sun X; Zhang H; Wang J; Shi C; Hua D; Li J
    Sci Rep; 2022 Jan; 12(1):518. PubMed ID: 35017569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification and Explanation for Intrusion Detection System Based on Ensemble Trees and SHAP Method.
    Le TT; Kim H; Kang H; Kim H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of individual and ensemble machine learning models for prediction of sulphate levels in untreated and treated Acid Mine Drainage.
    Hasrod T; Nuapia YB; Tutu H
    Environ Monit Assess; 2024 Mar; 196(4):332. PubMed ID: 38429461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous ensemble learning for enhanced crash forecasts - A frequentist and machine learning based stacking framework.
    Ahmad N; Wali B; Khattak AJ
    J Safety Res; 2023 Feb; 84():418-434. PubMed ID: 36868672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.
    Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH
    Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China.
    Lou HR; Wang X; Gao Y; Zeng Q
    BMC Public Health; 2022 Nov; 22(1):2167. PubMed ID: 36434563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study.
    Sudarshan VK; Brabrand M; Range TM; Wiil UK
    Comput Biol Med; 2021 Aug; 135():104541. PubMed ID: 34166880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of electron-solid interaction parameters using machine learning.
    Akbari F
    Med Phys; 2024 Oct; ():. PubMed ID: 39395202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
    Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E
    Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.