These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 37025803)

  • 1. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives.
    Tabaie Z; Omidvar A
    Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems.
    Jia Y; Jiang Q; Sun H; Liu P; Hu D; Pei Y; Liu W; Crispin X; Fabiano S; Ma Y; Cao Y
    Adv Mater; 2021 Oct; 33(42):e2102990. PubMed ID: 34486174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operation of Wearable Thermoelectric Generators Using Dual Sources of Heat and Light.
    Jeong MH; Kim KC; Kim JS; Choi KJ
    Adv Sci (Weinh); 2022 Apr; 9(12):e2104915. PubMed ID: 35199951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive Radiative Cooling Enables Improved Performance in Wearable Thermoelectric Generators.
    Liu Y; Hou S; Wang X; Yin L; Wu Z; Wang X; Mao J; Sui J; Liu X; Zhang Q; Liu Z; Cao F
    Small; 2022 Mar; 18(10):e2106875. PubMed ID: 34984821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems.
    Dargusch M; Liu WD; Chen ZG
    Adv Sci (Weinh); 2020 Sep; 7(18):2001362. PubMed ID: 32999843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Materials for Wearable Thermoelectric Generators and Biosensing Devices.
    Sattar M; Yeo WH
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices.
    Teixeira JS; Costa RS; Pires AL; Pereira AM; Pereira C
    Dalton Trans; 2021 Jul; 50(29):9983-10013. PubMed ID: 34264261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Skin-Worn Thermoelectric Generators for Body Heat Energy Harvesting to Power Wearable Devices.
    Smith RI; Johnston ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7158-7161. PubMed ID: 34892751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Hybrid Photo-Thermoelectric Generator Based on Single Thermoelectric Effect for Simultaneously Harvesting Thermal and Radiation Energies.
    Wen DL; Liu X; Bao JF; Li GK; Feng T; Zhang F; Liu D; Zhang XS
    ACS Appl Mater Interfaces; 2021 May; 13(18):21401-21410. PubMed ID: 33942604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Liquid Metal-Enhanced Wearable Thermoelectric Generator.
    Liu W; Li Z; Yang Y; Hu C; Wang Z; Lu Y
    Bioengineering (Basel); 2022 Jun; 9(6):. PubMed ID: 35735497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization Design and Performance Study of Wearable Thermoelectric Device Using Phase Change Material as Heat Sink.
    Xin J; Xu G; Guo T; Nan B
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cross-Plane Design for Wearable Thermoelectric Generators with High Stretchability and Output Performance.
    Yang J; Pu Y; Yu H; Ye DD; Liu X; Xin JH
    Small; 2023 Nov; 19(45):e2304529. PubMed ID: 37434332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Thermoelectric Materials and Generators: Challenges and Innovations.
    Wang Y; Yang L; Shi XL; Shi X; Chen L; Dargusch MS; Zou J; Chen ZG
    Adv Mater; 2019 Jul; 31(29):e1807916. PubMed ID: 31148307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Fiber-Based Wearable Energy Systems.
    Tao X
    Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Design of Nanowire Wearable Stretchable Thermoelectric Generator.
    Chen C; Wang R; Li XL; Zhao B; Wang H; Zhou Z; Zhu J; Liu JW
    Nano Lett; 2022 May; 22(10):4131-4136. PubMed ID: 35536152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Thermoelectric Generators: From Application to Hybridization.
    Liu Z; Tian B; Li Y; Guo Z; Zhang Z; Luo Z; Zhao L; Lin Q; Lee C; Jiang Z
    Small; 2023 Nov; 19(48):e2304599. PubMed ID: 37544920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Objective evaluation of wearable thermoelectric generator: From platform building to performance verification.
    Xu Z; Yang D; Yuan X; Hua S; You H; Xing Y; Hu K; Wang J; Xiao Y; Yan Y; Tang X
    Rev Sci Instrum; 2022 Apr; 93(4):045105. PubMed ID: 35489943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications.
    Nozariasbmarz A; Krasinski JS; Vashaee D
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high performance wearable thermoelectric coolers with less materials.
    Kishore RA; Nozariasbmarz A; Poudel B; Sanghadasa M; Priya S
    Nat Commun; 2019 Apr; 10(1):1765. PubMed ID: 30992438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology.
    Zhao X; Han W; Zhao C; Wang S; Kong F; Ji X; Li Z; Shen X
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10301-10309. PubMed ID: 30773879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.