BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37025948)

  • 21. Two cardenolide glycosides from the seed fairs of Asclepias curassavica and their cytotoxic activities.
    Ji AJ; Ma Q; Kong MY; Li LY; Chen XL; Liu ZQ; Wu JJ; Zhang RR
    Chin J Nat Med; 2022 Mar; 20(3):202-209. PubMed ID: 35369964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from
    Rubiano-Buitrago P; Pradhan S; Paetz C; Rowland HM
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds.
    Agrawal AA; Böröczky K; Haribal M; Hastings AP; White RA; Jiang RW; Duplais C
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial property and antiproliferative activity of Centaurea babylonica (L.) L. on human carcinomas and cervical cancer cell lines.
    Ceyhan Güvensen N; Keskin D; Güneş H; Kesik Oktay M; Yıldırım H
    Ann Agric Environ Med; 2019 Jun; 26(2):290-297. PubMed ID: 31232061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.
    Warashina T; Shikata K; Miyase T; Fujii S; Noro T
    Chem Pharm Bull (Tokyo); 2008 Aug; 56(8):1159-63. PubMed ID: 18670118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three new iridoids from the aerial parts of
    Eser F; Altun M; Demirtas I; Behcet L; Aktas E
    Nat Prod Res; 2023 Jul; 37(13):2205-2214. PubMed ID: 35129012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-classical cardenolides from Calotropis gigantea exhibit anticancer effect as HIF-1 inhibitors.
    Zheng Z; Zhou Z; Zhang Q; Zhou X; Yang J; Yang MR; Zhu GY; Jiang ZH; Li T; Lin Q; Bai LP
    Bioorg Chem; 2021 Apr; 109():104740. PubMed ID: 33626453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytochemical analysis with free radical scavenging, nitric oxide inhibition and antiproliferative activity of Sarcocephalus pobeguinii extracts.
    Mfotie Njoya E; Munvera AM; Mkounga P; Nkengfack AE; McGaw LJ
    BMC Complement Altern Med; 2017 Apr; 17(1):199. PubMed ID: 28376770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two New Cyototoxic Cardenolides from the Whole Plants of Adonis multiflora Nishikawa & Koki Ito.
    Jung JW; Baek NI; Hwang-Bo J; Lee SS; Park JH; Seo KH; Kwon JH; Oh EJ; Lee DY; Chung IS; Bang MH
    Molecules; 2015 Nov; 20(11):20823-31. PubMed ID: 26610451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytotoxic cardenolides from the latex of Calotropis procera.
    Mohamed NH; Liu M; Abdel-Mageed WM; Alwahibi LH; Dai H; Ismail MA; Badr G; Quinn RJ; Liu X; Zhang L; Shoreit AA
    Bioorg Med Chem Lett; 2015 Oct; 25(20):4615-20. PubMed ID: 26323871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardenolides from the bark of Calotropis gigantea.
    Van Khang P; Zhang ZG; Meng YH; Guo DA; Liu X; Hu LH; Ma L
    Nat Prod Res; 2014; 28(15):1191-6. PubMed ID: 24735475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elaeodendron orientale as a source of cytotoxic cardenolides.
    Osorio AA; López MR; Jiménez IA; Moujir LM; Rodríguez ML; Bazzocchi IL
    Phytochemistry; 2014 Sep; 105():60-7. PubMed ID: 25014657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An updated pharmacological insight into calotropin as a potential therapeutic agent in cancer.
    Rajkovic J; Novakovic R; Grujic-Milanovic J; Ydyrys A; Ablaikhanova N; Calina D; Sharifi-Rad J; Al-Omari B
    Front Pharmacol; 2023; 14():1160616. PubMed ID: 37138852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potent Antagonists of RORγt, Cardenolides from Calotropis gigantea, Exhibit Discrepant Effects on the Differentiation of T Lymphocyte Subsets.
    Liu J; Bai LP; Yang F; Yao X; Lei K; Kei Lam CW; Wu Q; Zhuang Y; Xiao R; Liao K; Kuok H; Li T; Liu L
    Mol Pharm; 2019 Feb; 16(2):798-807. PubMed ID: 30592425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity.
    Huang HC; Lin MK; Yang HL; Hseu YC; Liaw CC; Tseng YH; Tsuzuki M; Kuo YH
    Planta Med; 2013 Sep; 79(14):1362-9. PubMed ID: 23877916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cardenolides of Leptadenia madagascariensis from the Madagascar dry forest.
    Pan E; Harinantenaina L; Brodie PJ; Callmander M; Rakotonandrasana S; Rakotobe E; Rasamison VE; Tendyke K; Shen Y; Suh EM; Kingston DG
    Bioorg Med Chem; 2011 Jan; 19(1):422-8. PubMed ID: 21159516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of the CYP Enzymatic System Responsible of Heterocyclic Amines Bioactivation by an
    Gutiérrez-Pacheco SL; Peña-Ramos EA; Santes-Palacios R; Valenzuela-Melendres M; Hernández-Mendoza A; Burgos-Hernández A; Robles-Zepeda RE; Espinosa-Aguirre JJ
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37375979
    [No Abstract]   [Full Text] [Related]  

  • 38. Antiproliferative cardenolides from Periploca graeca.
    Spera D; Siciliano T; De Tommasi N; Braca A; Vessières A
    Planta Med; 2007 Apr; 73(4):384-7. PubMed ID: 17366373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardenolides from the leaves of Nerium oleander.
    Cao YL; Zhang MH; Lu YF; Li CY; Tang JS; Jiang MM
    Fitoterapia; 2018 Jun; 127():293-300. PubMed ID: 29540313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antiproliferative effect from the Mexican poleo (Hedeoma drummondii).
    Viveros-Valdez E; Rivas-Morales C; Oranday-Cárdenas A; Castro-Garza J; Carranza-Rosales P
    J Med Food; 2010 Jun; 13(3):740-2. PubMed ID: 20406139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.