These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification. Fan J; Yang T; Wang H; Zhang H; Zhang W; Ji M; Miao J J Imaging Inform Med; 2024 Sep; ():. PubMed ID: 39299958 [TBL] [Abstract][Full Text] [Related]
3. A Cross-Domain Weakly Supervised Diabetic Retinopathy Lesion Identification Method Based on Multiple Instance Learning and Domain Adaptation. Li R; Gu Y; Wang X; Pan J Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760202 [TBL] [Abstract][Full Text] [Related]
4. Weakly supervised segmentation on neural compressed histopathology with self-equivariant regularization. Chikontwe P; Jung Sung H; Jeong J; Kim M; Go H; Jeong Nam S; Hyun Park S Med Image Anal; 2022 Aug; 80():102482. PubMed ID: 35688048 [TBL] [Abstract][Full Text] [Related]
5. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis. Cao P; Ren F; Wan C; Yang J; Zaiane O Comput Med Imaging Graph; 2018 Nov; 69():112-124. PubMed ID: 30237145 [TBL] [Abstract][Full Text] [Related]
6. Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data. Lo J; Yu TT; Ma D; Zang P; Owen JP; Zhang Q; Wang RK; Beg MF; Lee AY; Jia Y; Sarunic MV Ophthalmol Sci; 2021 Dec; 1(4):100069. PubMed ID: 36246944 [TBL] [Abstract][Full Text] [Related]
7. Weakly supervised histopathology image segmentation with self-attention. Li K; Qian Z; Han Y; Chang EI; Wei B; Lai M; Liao J; Fan Y; Xu Y Med Image Anal; 2023 May; 86():102791. PubMed ID: 36933385 [TBL] [Abstract][Full Text] [Related]
8. Deep semi-supervised multiple instance learning with self-correction for DME classification from OCT images. Wang X; Tang F; Chen H; Cheung CY; Heng PA Med Image Anal; 2023 Jan; 83():102673. PubMed ID: 36403310 [TBL] [Abstract][Full Text] [Related]
9. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification. Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132 [TBL] [Abstract][Full Text] [Related]
10. IDA-MIL: Classification of Glomerular with Spike-like Projections via Multiple Instance Learning with Instance-level Data Augmentation. Wu X; Chen Y; Li X; Liu X; Liu Y; Wu Y; Li M; Zhou X; Wang C Comput Methods Programs Biomed; 2022 Oct; 225():107106. PubMed ID: 36088891 [TBL] [Abstract][Full Text] [Related]
11. Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy. Li Y; Zhu M; Sun G; Chen J; Zhu X; Yang J Math Biosci Eng; 2022 Mar; 19(5):5293-5311. PubMed ID: 35430865 [TBL] [Abstract][Full Text] [Related]
12. Cyclic Learning: Bridging Image-Level Labels and Nuclei Instance Segmentation. Zhou Y; Wu Y; Wang Z; Wei B; Lai M; Shou J; Fan Y; Xu Y IEEE Trans Med Imaging; 2023 Oct; 42(10):3104-3116. PubMed ID: 37171933 [TBL] [Abstract][Full Text] [Related]
13. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
14. Collaborative learning of weakly-supervised domain adaptation for diabetic retinopathy grading on retinal images. Cao P; Hou Q; Song R; Wang H; Zaiane O Comput Biol Med; 2022 May; 144():105341. PubMed ID: 35279423 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
17. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images. Papadopoulos A; Topouzis F; Delopoulos A Sci Rep; 2021 Jul; 11(1):14326. PubMed ID: 34253799 [TBL] [Abstract][Full Text] [Related]
18. Iterative multiple instance learning for weakly annotated whole slide image classification. Zhou Y; Che S; Lu F; Liu S; Yan Z; Wei J; Li Y; Ding X; Lu Y Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37311470 [No Abstract] [Full Text] [Related]
19. SG-MIAN: Self-guided multiple information aggregation network for image-level weakly supervised skin lesion segmentation. Li Z; Zhang N; Gong H; Qiu R; Zhang W Comput Biol Med; 2024 Mar; 170():107988. PubMed ID: 38232452 [TBL] [Abstract][Full Text] [Related]
20. Anomaly-guided weakly supervised lesion segmentation on retinal OCT images. Yang J; Mehta N; Demirci G; Hu X; Ramakrishnan MS; Naguib M; Chen C; Tsai CL Med Image Anal; 2024 May; 94():103139. PubMed ID: 38493532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]