BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37027302)

  • 1. Neural ensemble dynamics in trunk and hindlimb sensorimotor cortex encode for the control of postural stability.
    Disse GD; Nandakumar B; Pauzin FP; Blumenthal GH; Kong Z; Ditterich J; Moxon KA
    Cell Rep; 2023 Apr; 42(4):112347. PubMed ID: 37027302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spinal cord injury on neural encoding of spontaneous postural perturbations in the hindlimb sensorimotor cortex.
    Dougherty JB; Disse GD; Bridges NR; Moxon KA
    J Neurophysiol; 2021 Nov; 126(5):1555-1567. PubMed ID: 34379540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization.
    Nandakumar B; Blumenthal GH; Pauzin FP; Moxon KA
    Cereb Cortex; 2021 Oct; 31(11):5165-5187. PubMed ID: 34165153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands.
    Solis-Escalante T; van der Cruijsen J; de Kam D; van Kordelaar J; Weerdesteyn V; Schouten AC
    Neuroimage; 2019 Mar; 188():557-571. PubMed ID: 30590120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations.
    Honeycutt CF; Gottschall JS; Nichols TR
    J Neurophysiol; 2009 Jun; 101(6):2751-61. PubMed ID: 19321638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].
    Musienko PE; Gorskiĭ OV; Kilimnik VA; Kozlovskaia IB; Courtine G; Edgerton VR; Gerasimenko IuP
    Ross Fiziol Zh Im I M Sechenova; 2013 Mar; 99(3):392-405. PubMed ID: 23789442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb.
    Honeycutt CF; Nichols TR
    J Neurophysiol; 2014 Mar; 111(5):900-7. PubMed ID: 24304861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural perturbations: new insights for treatment of balance disorders.
    Horak FB; Henry SM; Shumway-Cook A
    Phys Ther; 1997 May; 77(5):517-33. PubMed ID: 9149762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding bipedal locomotion from the rat sensorimotor cortex.
    Rigosa J; Panarese A; Dominici N; Friedli L; van den Brand R; Carpaneto J; DiGiovanna J; Courtine G; Micera S
    J Neural Eng; 2015 Oct; 12(5):056014. PubMed ID: 26331532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical capabilities influence postural control strategies in the cat hindlimb.
    McKay JL; Burkholder TJ; Ting LH
    J Biomech; 2007; 40(10):2254-60. PubMed ID: 17156787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to stand with unexpected sensorimotor delays.
    Rasman BG; Forbes PA; Peters RM; Ortiz O; Franks I; Inglis JT; Chua R; Blouin JS
    Elife; 2021 Aug; 10():. PubMed ID: 34374648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathodal transcranial direct current stimulation of the posterior parietal cortex reduces steady-state postural stability during the effect of light touch.
    Ishigaki T; Imai R; Morioka S
    Neuroreport; 2016 Sep; 27(14):1050-5. PubMed ID: 27495219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent control of limb position and contact forces in cat posture.
    Lacquaniti F; Maioli C
    J Neurophysiol; 1994 Oct; 72(4):1476-95. PubMed ID: 7823081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two functional muscle groupings during postural equilibrium tasks in standing cats.
    Jacobs R; Macpherson JM
    J Neurophysiol; 1996 Oct; 76(4):2402-11. PubMed ID: 8899613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human postural dynamics.
    Johansson R; Magnusson M
    Crit Rev Biomed Eng; 1991; 18(6):413-37. PubMed ID: 1855384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proprioceptive impairment and postural orientation control in Parkinson's disease.
    Vaugoyeau M; Hakam H; Azulay JP
    Hum Mov Sci; 2011 Apr; 30(2):405-14. PubMed ID: 21419506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pontomedullary reticular formation contributes to the compensatory postural responses observed following removal of the support surface in the standing cat.
    Stapley PJ; Drew T
    J Neurophysiol; 2009 Mar; 101(3):1334-50. PubMed ID: 19118108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of vestibular and hindlimb inputs by vestibular nucleus neurons: multisensory influences on postural control.
    McCall AA; Miller DM; Balaban CD
    J Neurophysiol; 2021 Apr; 125(4):1095-1110. PubMed ID: 33534649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of different classes of neurons of the motor cortex during postural corrections.
    Beloozerova IN; Sirota MG; Swadlow HA; Orlovsky GN; Popova LB; Deliagina TG
    J Neurosci; 2003 Aug; 23(21):7844-53. PubMed ID: 12944514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.