These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37027302)

  • 41. Functional muscle synergies constrain force production during postural tasks.
    McKay JL; Ting LH
    J Biomech; 2008; 41(2):299-306. PubMed ID: 17980370
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Patterns of whole-body muscle activations following vertical perturbations during standing and walking.
    Cano Porras D; Jacobs JV; Inzelberg R; Bahat Y; Zeilig G; Plotnik M
    J Neuroeng Rehabil; 2021 May; 18(1):75. PubMed ID: 33957953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.
    Goldstein LB
    Brain Res; 1995 Mar; 674(1):167-70. PubMed ID: 7773689
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The integration of multiple proprioceptive information: effect of ankle tendon vibration on postural responses to platform tilt.
    Hatzitaki V; Pavlou M; Bronstein AM
    Exp Brain Res; 2004 Feb; 154(3):345-54. PubMed ID: 14586531
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of head position on postural orientation and equilibrium.
    Barberini CL; Macpherson JM
    Exp Brain Res; 1998 Sep; 122(2):175-84. PubMed ID: 9776516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?
    Horak FB
    Age Ageing; 2006 Sep; 35 Suppl 2():ii7-ii11. PubMed ID: 16926210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Force-sensitive afferents recruited during stance encode sensory depression in the contralateral swinging limb during locomotion.
    Hochman S; Hayes HB; Speigel I; Chang YH
    Ann N Y Acad Sci; 2013 Mar; 1279(1):103-13. PubMed ID: 23531008
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of cortical activity in response to visually induced postural perturbation: combined VR and EEG study.
    Slobounov SM; Teel E; Newell KM
    Neurosci Lett; 2013 Jun; 547():6-9. PubMed ID: 23665528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations.
    Giszter SF; Davies MR; Graziani V
    J Neurophysiol; 2007 Apr; 97(4):2663-75. PubMed ID: 17287444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis.
    Santos MJ; Kanekar N; Aruin AS
    J Electromyogr Kinesiol; 2010 Jun; 20(3):388-97. PubMed ID: 19660966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direction-specific postural instability in subjects with Parkinson's disease.
    Horak FB; Dimitrova D; Nutt JG
    Exp Neurol; 2005 Jun; 193(2):504-21. PubMed ID: 15869953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altered trunk position sense and its relation to balance functions in people post-stroke.
    Ryerson S; Byl NN; Brown DA; Wong RA; Hidler JM
    J Neurol Phys Ther; 2008 Mar; 32(1):14-20. PubMed ID: 18463551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visual inputs and postural manipulations affect the location of somatosensory percepts elicited by electrical stimulation.
    Christie BP; Charkhkar H; Shell CE; Marasco PD; Tyler DJ; Triolo RJ
    Sci Rep; 2019 Aug; 9(1):11699. PubMed ID: 31406122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates.
    Soblosky JS; Matthews MA; Davidson JF; Tabor SL; Carey ME
    Behav Brain Res; 1996 Sep; 79(1-2):79-92. PubMed ID: 8883819
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental muscle pain challenges the postural stability during quiet stance and unexpected posture perturbation.
    Hirata RP; Ervilha UF; Arendt-Nielsen L; Graven-Nielsen T
    J Pain; 2011 Aug; 12(8):911-9. PubMed ID: 21680253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
    DiGiovanna J; Dominici N; Friedli L; Rigosa J; Duis S; Kreider J; Beauparlant J; van den Brand R; Schieppati M; Micera S; Courtine G
    J Neurosci; 2016 Oct; 36(40):10440-10455. PubMed ID: 27707977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Midfrontal theta dynamics index the monitoring of postural stability.
    Stokkermans M; Solis-Escalante T; Cohen MX; Weerdesteyn V
    Cereb Cortex; 2023 Mar; 33(7):3454-3466. PubMed ID: 36066445
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of cognitive functions to postural control in anticipating self-paced and externally-triggered lower-limb perturbations.
    Quinzi F; Berchicci M; Perri RL; Bianco V; Labanca L; Macaluso A; Di Russo F
    Behav Brain Res; 2019 Jul; 366():56-66. PubMed ID: 30898679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generalizability of perturbation-evoked cortical potentials: Independence from sensory, motor and overall postural state.
    Mochizuki G; Sibley KM; Cheung HJ; Camilleri JM; McIlroy WE
    Neurosci Lett; 2009 Feb; 451(1):40-4. PubMed ID: 19110034
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EEG correlates of postural audio-biofeedback.
    Pirini M; Mancini M; Farella E; Chiari L
    Hum Mov Sci; 2011 Apr; 30(2):249-61. PubMed ID: 20800912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.