These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37027462)

  • 1. Loss of Earth system resilience during early Eocene transient global warming events.
    Setty S; Cramwinckel MJ; van Nes EH; van de Leemput IA; Dijkstra HA; Lourens LJ; Scheffer M; Sluijs A
    Sci Adv; 2023 Apr; 9(14):eade5466. PubMed ID: 37027462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abrupt climate change and transient climates during the Paleogene: a marine perspective.
    Zachos JC; Lohmann KC; Walker JC; Wise SW
    J Geol; 1993 Mar; 101(2):191-213. PubMed ID: 11537739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.
    Sexton PF; Norris RD; Wilson PA; Pälike H; Westerhold T; Röhl U; Bolton CT; Gibbs S
    Nature; 2011 Mar; 471(7338):349-52. PubMed ID: 21412336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Past extreme warming events linked to massive carbon release from thawing permafrost.
    DeConto RM; Galeotti S; Pagani M; Tracy D; Schaefer K; Zhang T; Pollard D; Beerling DJ
    Nature; 2012 Apr; 484(7392):87-91. PubMed ID: 22481362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paleocene/Eocene carbon feedbacks triggered by volcanic activity.
    Kender S; Bogus K; Pedersen GK; Dybkjær K; Mather TA; Mariani E; Ridgwell A; Riding JB; Wagner T; Hesselbo SP; Leng MJ
    Nat Commun; 2021 Aug; 12(1):5186. PubMed ID: 34465785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.
    Zeebe RE
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13739-44. PubMed ID: 23918402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astronomical pacing of late Palaeocene to early Eocene global warming events.
    Lourens LJ; Sluijs A; Kroon D; Zachos JC; Thomas E; Röhl U; Bowles J; Raffi I
    Nature; 2005 Jun; 435(7045):1083-7. PubMed ID: 15944716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact ejecta at the Paleocene-Eocene boundary.
    Schaller MF; Fung MK; Wright JD; Katz ME; Kent DV
    Science; 2016 Oct; 354(6309):225-229. PubMed ID: 27738171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread Warming Before and Elevated Barium Burial During the Paleocene-Eocene Thermal Maximum: Evidence for Methane Hydrate Release?
    Frieling J; Peterse F; Lunt DJ; Bohaty SM; Sinninghe Damsté JS; Reichart GJ; Sluijs A
    Paleoceanogr Paleoclimatol; 2019 Apr; 34(4):546-566. PubMed ID: 31245790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Archaeal lipid biomarker constraints on the Paleocene-Eocene carbon isotope excursion.
    Elling FJ; Gottschalk J; Doeana KD; Kusch S; Hurley SJ; Pearson A
    Nat Commun; 2019 Oct; 10(1):4519. PubMed ID: 31586063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of ocean circulation to warming during the Early Eocene greenhouse.
    Kirtland Turner S; Ridgwell A; Keller AL; Vahlenkamp M; Aleksinski AK; Sexton PF; Penman DE; Hull PM; Norris RD
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2311980121. PubMed ID: 38830092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling between Grand cycles and Events in Earth's climate during the past 115 million years.
    Boulila S
    Sci Rep; 2019 Jan; 9(1):327. PubMed ID: 30674928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.
    Jenkyns HC
    Philos Trans A Math Phys Eng Sci; 2003 Sep; 361(1810):1885-916; discussion 1916. PubMed ID: 14558900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repetitive mammalian dwarfing during ancient greenhouse warming events.
    D'Ambrosia AR; Clyde WC; Fricke HC; Gingerich PD; Abels HA
    Sci Adv; 2017 Mar; 3(3):e1601430. PubMed ID: 28345031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Middle Eocene greenhouse warming facilitated by diminished weathering feedback.
    van der Ploeg R; Selby D; Cramwinckel MJ; Li Y; Bohaty SM; Middelburg JJ; Sluijs A
    Nat Commun; 2018 Jul; 9(1):2877. PubMed ID: 30038400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum.
    Pagani M; Pedentchouk N; Huber M; Sluijs A; Schouten S; Brinkhuis H; Damsté JS; Dickens GR;
    Nature; 2006 Aug; 442(7103):671-5. PubMed ID: 16906647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum.
    Krause AJ; Sluijs A; van der Ploeg R; Lenton TM; Pogge von Strandmann PAE
    Nat Geosci; 2023; 16(8):730-738. PubMed ID: 37564379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum.
    Yao W; Paytan A; Wortmann UG
    Science; 2018 Aug; 361(6404):804-806. PubMed ID: 30026315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraints on the onset duration of the Paleocene-Eocene Thermal Maximum.
    Turner SK
    Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2130):. PubMed ID: 30177565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.