These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37027552)

  • 1. Repetitive Impedance Learning-Based Physically Human-Robot Interactive Control.
    Sun T; Yang J; Pan Y; Yu H
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):10629-10638. PubMed ID: 37027552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial hybrid adaptive impedance learning control for robots in repetitive interactive tasks.
    Yang J; Sun T; Yang H
    ISA Trans; 2023 Jul; 138():151-159. PubMed ID: 36828703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Interaction Control of Compliant Robots Using Impedance Learning.
    Sun T; Yang J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic Impedance Learning for Robot-Assisted Physical Training.
    Li Y; Zhou X; Zhong J; Li X
    Front Robot AI; 2019; 6():78. PubMed ID: 33501093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete-time practical robotic control for human-robot interaction with state constraint and sensorless force estimation.
    Ma Z; Liu Z; Huang P
    ISA Trans; 2022 Oct; 129(Pt A):659-674. PubMed ID: 35151487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory tracking control of 7-DOF redundant robot based on estimation of intention in physical human-robot interaction.
    Ye L; Xiong G; Zeng C; Zhang H
    Sci Prog; 2020; 103(3):36850420953642. PubMed ID: 32924809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite Learning Enhanced Robot Impedance Control.
    Sun T; Peng L; Cheng L; Hou ZG; Pan Y
    IEEE Trans Neural Netw Learn Syst; 2020 Mar; 31(3):1052-1059. PubMed ID: 31107667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration.
    Yu X; He W; Li Y; Xue C; Li J; Zou J; Yang C
    IEEE Trans Cybern; 2021 Apr; 51(4):1822-1834. PubMed ID: 31647450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance Variation and Learning Strategies in Human-Robot Interaction.
    Sharifi M; Zakerimanesh A; Mehr JK; Torabi A; Mushahwar VK; Tavakoli M
    IEEE Trans Cybern; 2022 Jul; 52(7):6462-6475. PubMed ID: 33449901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness-based tuning of an adaptive impedance controller for robot-assisted rehabilitation of upper limbs.
    Maldonado B; Mendoza M; Bonilla I; Reyna-GutiƩrrez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3578-81. PubMed ID: 26737066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable neurovisual servoing for robot manipulators.
    Loreto G; Garrido R
    IEEE Trans Neural Netw; 2006 Jul; 17(4):953-965. PubMed ID: 16856658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive variable impedance position/force tracking control of fracture reduction robot.
    Zheng G; Lei J; Hu L; Zhang L
    Int J Med Robot; 2023 Apr; 19(2):e2469. PubMed ID: 36302164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Fuzzy Control for Coordinated Multiple Robots With Constraint Using Impedance Learning.
    Kong L; He W; Yang C; Li Z; Sun C
    IEEE Trans Cybern; 2019 Aug; 49(8):3052-3063. PubMed ID: 30843856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative Game-Based Approximate Optimal Control of Modular Robot Manipulators for Human-Robot Collaboration.
    An T; Wang Y; Liu G; Li Y; Dong B
    IEEE Trans Cybern; 2023 Jul; 53(7):4691-4703. PubMed ID: 37224373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots With Relative Motion.
    Jiang Y; Wang Y; Miao Z; Na J; Zhao Z; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1010-1021. PubMed ID: 33361000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance Control for Robotic Rehabilitation: A Robust Markovian Approach.
    Jutinico AL; Jaimes JC; Escalante FM; Perez-Ibarra JC; Terra MH; Siqueira AAG
    Front Neurorobot; 2017; 11():43. PubMed ID: 28883790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4551-4561. PubMed ID: 33651696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-Time Interactive Control of Robots with Multiple Interaction Modes.
    Yang J; Sun T
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.