These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37027603)

  • 1. Microbe-Disease Association Prediction Using RGCN Through Microbe-Drug-Disease Network.
    Wang Y; Lei X; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3353-3362. PubMed ID: 37027603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HKFGCN: A novel multiple kernel fusion framework on graph convolutional network to predict microbe-drug associations.
    Wu Z; Li S; Luo L; Ding P
    Comput Biol Chem; 2024 Jun; 110():108041. PubMed ID: 38471354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting potential microbe-disease associations based on dual branch graph convolutional network.
    Chen J; Zhu Y; Yuan Q
    J Cell Mol Med; 2024 Aug; 28(15):e18571. PubMed ID: 39086148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1595-1604. PubMed ID: 30932846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm.
    Liu H; Bing P; Zhang M; Tian G; Ma J; Li H; Bao M; He K; He J; He B; Yang J
    Comput Struct Biotechnol J; 2023; 21():1414-1423. PubMed ID: 36824227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier.
    Ma Q; Tan Y; Wang L
    BMC Bioinformatics; 2023 Feb; 24(1):35. PubMed ID: 36732704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAELGMDA: Identifying human microbe-disease associations based on sparse autoencoder and LightGBM.
    Wang F; Yang H; Wu Y; Peng L; Li X
    Front Microbiol; 2023; 14():1207209. PubMed ID: 37415823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting human microbe-drug associations via graph convolutional network with conditional random field.
    Long Y; Wu M; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(19):4918-4927. PubMed ID: 32597948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GLNNMDA: a multimodal prediction model for microbe-drug associations based on global and local features.
    Kuang H; Liu X; Tan H; Zhang Z; Zeng B; Wang L
    Sci Rep; 2024 Sep; 14(1):20847. PubMed ID: 39242712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Microbe-Disease Association Based on Multiple Similarities and LINE Algorithm.
    Wang Y; Lei X; Lu C; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2399-2408. PubMed ID: 34014827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M
    Wang S; Liu JX; Li F; Wang J; Gao YL
    IEEE J Biomed Health Inform; 2024 Oct; 28(10):6259-6267. PubMed ID: 39012741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model for potential microbe-disease association detection based on improved graph convolutional networks and multi-channel autoencoders.
    Zhang C; Zhang Z; Zhang F; Zeng B; Liu X; Wang L
    Front Microbiol; 2024; 15():1435408. PubMed ID: 39144226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph neural network and multi-data heterogeneous networks for microbe-disease prediction.
    Gong H; You X; Jin M; Meng Y; Zhang H; Yang S; Xu J
    Front Microbiol; 2022; 13():1077111. PubMed ID: 36620040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network.
    Zou S; Zhang J; Zhang Z
    PLoS One; 2017; 12(9):e0184394. PubMed ID: 28880967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Microbe-Disease Association Prediction With Graph Regularized Non-Negative Matrix Factorization.
    He BS; Peng LH; Li Z
    Front Microbiol; 2018; 9():2560. PubMed ID: 30443240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network.
    Long Y; Luo J
    BMC Bioinformatics; 2019 Nov; 20(1):541. PubMed ID: 31675979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.